Advertisement

Shannon Entropy in Time–Varying Clique Networks

  • Marcelo do Vale CunhaEmail author
  • Carlos César Ribeiro Santos
  • Marcelo Albano Moret
  • Hernane Borges de Barros Pereira
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)

Abstract

Recent works have used information theory in complex networks. Studies often discuss entropy in the degree distributions of a network. However, there is no specific work for entropy in clique networks. In this regard, this work proposes a method to calculate clique network entropy, as well as its theoretical maximum and minimum values. The entropies are calculated for the dataset of the semantic networks of titles of scientific papers from the journals Nature and Science for approximately a decade. Journals are modeled as time–varying graphs and each system is analyzed from a time sliding window. The results show the entropy values of vertices and edges in each window arranged in time series, and also suggest the moment which has more or less vocabulary diversification when this diversity turns the studied journals closer or move them away. For that matter, this report contributes to the studies on clique networks and the diffusion of human knowledge in journals of high scientific impact.

Keywords

Networks of cliques Shannon entropy Time–varying graphs Semantic networks Social network analysis 

Notes

Acknowledgment

This paper is being financially supported by the Rectory of Research and Innovation of the Federal Institute of Bahia (PRPGI-IFBA) and the Senai Cimatec-BA University Center, from its preparation to its presentation at Complex Networks 2019.

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mousavian, Z., Kavousi, K., Masoudi–Nejad, A.: Information theory in systems biology. Part I: gene regulatory and metabolic networks. In: Seminars in Cell & Developmental Biology, vol. 51, pp. 3–13. Academic Press (2016)Google Scholar
  3. 3.
    Mishra, S., Ayyub, B.M.: Shannon entropy for quantifying uncertainty and risk in economic disparity. Risk Anal. 39(10), 2160–2181 (2019)CrossRefGoogle Scholar
  4. 4.
    Nascimento, W.S., Prudente, F.V.: Shannon entropy: a study of confined hydrogenic–like atoms. Chem. Phys. Lett. 691, 401–407 (2018)CrossRefGoogle Scholar
  5. 5.
    Zenil, H., Kiani, N.A., Tegnér, J.: Methods of information theory and algorithmic complexity for network biology. In: Seminars in Cell & Developmental Biology, vol. 51, pp. 32–43. Academic Press (2016)Google Scholar
  6. 6.
    Zurek, W.H.: Complexity, vol. 8. Entropy and the Physics of Information. CRC Press, Boca Raton (2018)Google Scholar
  7. 7.
    Gao, X., Gallicchio, E., Roitberg, A.E.: The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy. J. Chem. Phys. 151(3), 034113 (2019)CrossRefGoogle Scholar
  8. 8.
    Solé, R.V., Valverde, S.: Information theory of complex networks: on evolution and architectural constraints. In: Complex Networks, pp. 189–207. Springer, Berlin (2004)CrossRefGoogle Scholar
  9. 9.
    Ji, L., Bing–Hong, W., Wen–Xu, W., Tao, Z.: Network entropy based on topology configuration and its computation to random networks. Chin. Phys. Lett. 25(11), 4177 (2008)CrossRefGoogle Scholar
  10. 10.
    Viol, A., Palhano-Fontes, F., Onias, H., de Araujo, D.B., Hövel, P., Viswanathan, G.M.: Characterizing complex networks using entropy–degree diagrams: unveiling changes in functional brain connectivity induced by Ayahuasca. Entropy 21(2), 128 (2019)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., Latora, V.: Components in time varying–graphs. Chaos: Interdisc. J. Nonlinear Sci. 22(2), 023101 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time–varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)CrossRefGoogle Scholar
  13. 13.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  14. 14.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Newman, M.E.: Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64(1), 016131 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Caldeira, S.M., Lobao, T.P., Andrade, R.F.S., Neme, A., Miranda, J.V.: The network of concepts in written texts. Eur. Phys. J. B-Condens. Matter Complex Syst. 49(4), 523–529 (2006)CrossRefGoogle Scholar
  17. 17.
    Teixeira, G.M., Aguiar, M.S.F., Carvalho, C.F., Dantas, D.R., Cunha, M.V., Morais, J.H.M., Pereira, H.B.B., Miranda, J.G.V.: Complex semantic networks. Int. J. Modern Phys. C 21(03), 333–347 (2010)CrossRefGoogle Scholar
  18. 18.
    Pereira, H.D.B., Fadigas, I.S., Senna, V., Moret, M.A.: Semantic networks based on titles of scientific papers. Phys. A: Stat. Mech. Appl. 390(6), 1192–1197 (2011)CrossRefGoogle Scholar
  19. 19.
    Pereira, H.B.B., Fadigas, I.S., Monteiro, R.L.S., Cordeiro, A.J.A., Moret, M.A.: Density: a measure of the diversity of concepts addressed in semantic networks. Phys. A: Stat. Mech. Appl. 441, 81–84 (2016)CrossRefGoogle Scholar
  20. 20.
    Grilo, M., Fadigas, I.S., Miranda, J.G.V., Cunha, M.V., Monteiro, R.L.S., Pereira, H.B.B.: Robustness in semantic networks based on cliques. Phys. A: Stat. Mech. Appl. 472, 94–102 (2017)CrossRefGoogle Scholar
  21. 21.
    Brillouin, L.: Science and Information Theory. Courier Corporation, Chelmsford (2013)zbMATHGoogle Scholar
  22. 22.
    Fadigas, I.D.S., Pereira, H.B.D.B.: A network approach based on cliques. Phys. A: Stat. Mech. Appl. 392(10), 2576–2587 (2013)CrossRefGoogle Scholar
  23. 23.
    Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)CrossRefGoogle Scholar
  24. 24.
    Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94(16), 160202 (2005)CrossRefGoogle Scholar
  25. 25.
    Lima–Neto, J.L.A., Cunha, M., Pereira, H.B.B.: Redes semânticas de discursos orais de membros de grupos de ajuda mútua. Obra Digit.: J. Commun. Technol. 14, 51–66 (2018)CrossRefGoogle Scholar
  26. 26.
    Henrique, T., de Sousa Fadigas, I., Rosa, M.G., de Barros Pereira, H.B.: Mathematics education semantic networks. Soc. Netw. Anal. Mining 4(1), 200 (2014)CrossRefGoogle Scholar
  27. 27.
    Cunha, M.V., Rosa, M.G., Fadigas, I.S., Miranda, J.G.V., Pereira, H.B.B.: Redes de títulos de artigos científicos variáveis no tempo. In: Anais do II Brazilian Workshop on Social Network Analysis and Mining, CSBC 2013, Maceió–AL, pp. 194–205 (2013)Google Scholar
  28. 28.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(4), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centro Universitário SENAI CIMATECSalvadorBrazil
  2. 2.Instituto Federal da BahiaBarreirasBrazil
  3. 3.Universidade do Estado da BahiaSalvadorBrazil

Personalised recommendations