Community-Aware Content Diffusion: Embeddednes and Permeability

  • Letizia MilliEmail author
  • Giulio Rossetti
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)


Viruses, opinions, ideas are different contents sharing a common trait: they need carriers embedded into a social context to spread. Modeling and approximating diffusive phenomena have always played an essential role in a varied range of applications from outbreak prevention to the analysis of meme and fake news. Classical approaches to such a task assume diffusion processes unfolding in a mean-field context, every actor being able to interact with all its peers. However, during the last decade, such an assumption has been progressively superseded by the availability of data modeling the real social network of individuals, thus producing a more reliable proxy for social interactions as spreading vehicles. In this work, following such a trend, we propose alternative ways of leveraging apriori knowledge on mesoscale network topology to design community-aware diffusion models with the aim of better approximate the spreading of content over complex and clustered social tissues.


Diffusion Epidemics Community discovery 



This work is supported by the European Community’s H2020 Program under the scheme “INFRAIA-1-2014-2015: Research Infrastructures”, grant agreement #654024 “SoBigData: Social Mining & Big Data Ecosystem” (SoBigData:


  1. 1.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD, pp. 137–146. ACM (2003)Google Scholar
  4. 4.
    Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018)CrossRefGoogle Scholar
  5. 5.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)CrossRefGoogle Scholar
  6. 6.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 115(772), 700–721 (1927)CrossRefGoogle Scholar
  7. 7.
    Bass, F.: A new product growth for model consumer durables. Manage. Sci. 15, 215–227 (1969)CrossRefGoogle Scholar
  8. 8.
    Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York (2010)Google Scholar
  9. 9.
    Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: PAKDD, pp. 380–389. Springer (2006)Google Scholar
  10. 10.
    Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on Twitter. In: 4th ACM WSDM, pp. 65–74. ACM (2011)Google Scholar
  11. 11.
    Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. Natl. Acad. Sci. 104(18), 7332–7336 (2007)CrossRefGoogle Scholar
  12. 12.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43 (2013)CrossRefGoogle Scholar
  13. 13.
    Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)CrossRefGoogle Scholar
  14. 14.
    Galstyan, A., Cohen, P.: Cascading dynamics in modular networks. Phys. Rev. E 75(3), 036109 (2007)CrossRefGoogle Scholar
  15. 15.
    Gleeson, J.P.: Cascades on correlated and modular random networks. Phys. Rev. E 77(4), 046117 (2008)CrossRefGoogle Scholar
  16. 16.
    Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367. Elsevier (1977)Google Scholar
  17. 17.
    Grabowicz, P.A., Ramasco, J.J., Moro, E., Pujol, J.M., Eguiluz, V.M.: Social features of online networks: the strength of intermediary ties in online social media. PLoS One 7(1), e29358 (2012)CrossRefGoogle Scholar
  18. 18.
    Wu, X., Liu, Z.: How community structure influences epidemic spread in social networks. Phys. A 387(2–3), 623–630 (2008)CrossRefGoogle Scholar
  19. 19.
    Huang, W., Li, C.: Epidemic spreading in scale-free networks with community structure. J. Stat. Mech: Theory Exp. 2007(01), P01014 (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, T., Li, P., Chen, Y., Zhang, J.: Community size effects on epidemic spreading in multiplex social networks. PLoS One 11(3), e0152021 (2016)CrossRefGoogle Scholar
  21. 21.
    Bu, Y., Gregory, S., Mills, H.L.: Efficient local behavioral-change strategies to reduce the spread of epidemics in networks. Phys. Rev. E 88(4), 042801 (2013)CrossRefGoogle Scholar
  22. 22.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRefGoogle Scholar
  23. 23.
    Nematzadeh, A., Ferrara, E., Flammini, A., Ahn, Y.-Y.: Optimal network modularity for information diffusion. Phys. Rev. Lett. 113(8), 088701 (2014)CrossRefGoogle Scholar
  24. 24.
    Weng, L. Menczer, F., Ahn, Y.-Y.: Predicting successful memes using network and community structure. In: ICWSM (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.KDD Laboratory, ISTI-CNRPisaItaly
  2. 2.University of PisaPisaItaly

Personalised recommendations