Advertisement

Modelling Spatial Information Diffusion

  • Zhuo Chen
  • Xinyue YeEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)

Abstract

This paper develops an open source toolkit SocialNetworkSimulator to model social networks based on a group of tweets with the keyword of ‘Charlotesville’, a topic vividly discussed over Twitter on the movement ‘Unite the Right rally’ occurred in Charlottesville, Virginia from August 11 to August 12, 2017. Both public attention value and geographical distance decay are demonstrated to show how temporal and spatial factors would influence such diffusion across social network.

Keywords

Information diffusion Social network Space Time 

Notes

Acknowledgements

This material is partially based upon work supported by the National Science Foundation under Grant No. 1416509. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Compton, R., Jurgens, D., Allen, D.: Geotagging one hundred million Twitter accounts with total variation minimization. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 393–401. IEEE (2014)Google Scholar
  2. 2.
    Crandall, D.J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.: Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. 107(52), 22436–22441 (2010)CrossRefGoogle Scholar
  3. 3.
    Dang, L., Chen, Z., Lee, J., Tsou, M.H., Ye, X.: Simulating the spatial diffusion of memes on social media networks. Int. J. Geogr. Inf. Sci. 1–24 (2019)Google Scholar
  4. 4.
    Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM Sigmod Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  5. 5.
    Kaltenbrunner, A., Scellato, S., Volkovich, Y., Laniado, D., Currie, D., Jutemar, E.J., Mascolo, C.: Far from the eyes, close on the web: impact of geographic distance on online social interactions. In: Proceedings of the 2012 ACM Workshop on Online Social Networks, pp. 19–24. ACM (2012)Google Scholar
  6. 6.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a newsmedia? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM (2010)Google Scholar
  7. 7.
    Li, H., Zeng, M., Zhang, Y., Ye, X., Hu, T.: Tackling innovation networks with smart data: a case study of the liquid crystal institute at Kent State University. In: DH (2017)Google Scholar
  8. 8.
    Onnela, J.P., Arbesman, S., González, M.C., Barabási, A.L., Christakis, N.A.: Geographic constraints on social network groups. PLoS one 6(4), e16939 (2011)CrossRefGoogle Scholar
  9. 9.
    Sharag-Eldin, A., Ye, X., Spitzberg, B., Tsou, M.H.: The role of space and place in social media communication: two case studies of policy perspectives. J. Comput. Soc. Sci. 2, 1–24 (2019)CrossRefGoogle Scholar
  10. 10.
    Yue, Y., Dong, K., Zhao, X., Ye, X.: Assessing wild fire risk in the United States using social media data. J. Risk Res. 1–15 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Kent State UniversityKentUSA
  2. 2.New Jersey Institute of TechnologyUniversity HeightsNewarkUSA

Personalised recommendations