Topological Properties of Brain Networks Underlying Deception: fMRI Study of Psychophysiological Interactions

  • Irina KnyazevaEmail author
  • Maxim Kireev
  • Ruslan Masharipov
  • Maya Zheltyakova
  • Alexander Korotkov
  • Makarenko Nikolay
  • Medvedev Svyatoslav
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


In the current study, we used topological data analysis of fMRI data for exploring neurophysiological mechanisms underlying the execution of deceptive actions. We used the results of the analysis of psychophysiological interactions (PPI) of fMRI data, obtained during an earlier experiment where subjects were required to mislead an opponent through sequential execution of deceptive and honest claims. A connectivity matrix based on PPI analysis was processed with the methods of algebraic topology. With this approach, we confirmed our previous findings that the increase in local activity and psychophysiological interactions of the left caudate nucleus is associated with the execution of deceptive actions. It is also in line with our hypothesis that involvement of the left caudate nucleus in brain processing of deception reflects the process of activation of error detection mechanism. In contrast to this finding, the right caudate nucleus was most frequently observed in the selected cliques associated with honest actions in comparison with deceptive ones. This observation points to possible differential role of left and right caudate nuclei in processing deceptive and honest actions, so it can be further investigated in future research. Topological analysis of higher-order organization of functional interactions revealed three cycles encompassing different sets of brain regions. Those regions are associated with executive control, error detection and sociocognitive processes, involvement of which in deception execution was hypothesized in previous studies. The fact of observation of such loops of functionally integrated brain regions demonstrates the possibility of parallel functioning of above-mentioned mechanisms and substantially extends the current view on neurobiological basics of deceptive behavior.


Deception Topological data analysis Network neuroscience Psychophysiological interactions Brain networks 



We gratefully acknowledge financial support of Saint-Petersburg State University (project ID 35544669), N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences and financial support of Institute of Information and Computational Technologies (Grant AR05134227, Kazakhstan).


  1. 1.
    Abe, N., Greene, J.D., Kiehl, K.A.: Reduced engagement of the anterior cingulate cortex in the dishonest decision-making of incarcerated psychopaths. Soc. Cogn. Affect. Neurosci. 13(8), 797–807 (2018)CrossRefGoogle Scholar
  2. 2.
    Abu-Akel, A., Shamay-Tsoory, S.: Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 49(11), 2971–2984 (2011)CrossRefGoogle Scholar
  3. 3.
    Bassett, D.S., Zurn, P., Gold, J.I.: On the nature and use of models in network neuroscience. Nat. Rev. Neurosci. 19(9), 566–578 (2018). Scholar
  4. 4.
    Bechtereva, N., Gretchin, V.: Physiological foundations of mental activity. In: International review of neurobiology, vol. 11, pp. 329–352. Elsevier (1969)Google Scholar
  5. 5.
    Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cisler, J.M., Bush, K., Steele, J.S.: A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. Neuroimage 84, 1042–1052 (2014)CrossRefGoogle Scholar
  7. 7.
    Debey, E., Ridderinkhof, R.K., De Houwer, J., De Schryver, M., Verschuere, B.: Suppressing the truth as a mechanism of deception: delta plots reveal the role of response inhibition in lying. Conscious. Cogn. 37, 148–159 (2015)CrossRefGoogle Scholar
  8. 8.
    Di, X., Reynolds, R.C., Biswal, B.B.: Imperfect (de)convolution may introduce spurious psychophysiological interactions and how to avoid it. Hum. Brain Mapp. 38(4), 1723–1740 (2017)CrossRefGoogle Scholar
  9. 9.
    Ding, X.P., Wu, S.J., Liu, J., Fu, G., Lee, K.: Functional neural networks of honesty and dishonesty in children: evidence from graph theory analysis. Sci. Rep. 7(1), 12085 (2017)CrossRefGoogle Scholar
  10. 10.
    Gao, J.F., Yang, Y., Huang, W.T., Lin, P., Ge, S., Zheng, H.M., Gu, L.Y., Zhou, H., Li, C.H., Rao, N.N.: Exploring time-and frequency-dependent functional connectivity and brain networks during deception with single-trial event-related potentials. Sci. Rep. 6, 37065 (2016)CrossRefGoogle Scholar
  11. 11.
    Gitelman, D.R., Penny, W.D., Ashburner, J., Friston, K.J.: Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19(1), 200–207 (2003)CrossRefGoogle Scholar
  12. 12.
    Giusti, C., Ghrist, R., Bassett, D.S.: Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41(1), 1–14 (2016). Scholar
  13. 13.
    Havel, P., Braun, B., Rau, S., Tonn, J.C., Fesl, G., Brückmann, H., Ilmberger, J.: Reproducibility of activation in four motor paradigms. J. Neurol. 253(4), 471–476 (2006)CrossRefGoogle Scholar
  14. 14.
    Kireev, M., Korotkov, A., Medvedeva, N., Masharipov, R., Medvedev, S.: Deceptive but not honest manipulative actions are associated with increased interaction between middle and inferior frontal gyri. Front. Neurosci. 11, 482 (2017). Scholar
  15. 15.
    Kireev, M., Korotkov, A., Medvedeva, N., Medvedev, S.: Possible role of an error detection mechanism in brain processing of deception: PET-fMRI study. Int. J. Psychophysiol. 90(3), 291–299 (2013)CrossRefGoogle Scholar
  16. 16.
    Kireev, M., Medvedeva, N., Korotkov, A., Medvedev, S.: Functional interactions between the caudate nuclei and inferior frontal gyrus providing deliberate deception. Hum. Physiol. 41(1), 22–26 (2015)CrossRefGoogle Scholar
  17. 17.
    Knyazeva, I., Poyda, A., Orlov, V., Verkhlyutov, V., Makarenko, N., Kozlov, S., Velichkovsky, B., Ushakov, V.: Resting state dynamic functional connectivity: network topology analysis. Biol. Inspired Cogn. Archit. 23, 43–53 (2018)Google Scholar
  18. 18.
    Lisofsky, N., Kazzer, P., Heekeren, H.R., Prehn, K.: Investigating socio-cognitive processes in deception: a quantitative meta-analysis of neuroimaging studies. Neuropsychologia 61, 113–122 (2014)CrossRefGoogle Scholar
  19. 19.
    Luo, Q., Ma, Y., Bhatt, M.A., Montague, P.R., Feng, J.: The functional architecture of the brain underlies strategic deception in impression management. Front. Hum. Neurosci. 11, 513 (2017)CrossRefGoogle Scholar
  20. 20.
    Mar, R.A.: The neural bases of social cognition and story comprehension. Annu. Rev. Psychol. 62, 103–134 (2011)CrossRefGoogle Scholar
  21. 21.
    McLaren, D.G., Ries, M.L., Xu, G., Johnson, S.C.: A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61(4), 1277–1286 (2012). Scholar
  22. 22.
    Newman, M.E.J.: Analysis of weighted networks. Phys. Rev. E 70, 056131 (2004). Scholar
  23. 23.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefGoogle Scholar
  24. 24.
    Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. EPJ Data Sci. 6(1), 17 (2017)CrossRefGoogle Scholar
  25. 25.
    Saxe, R.: Theory of mind (neural basis). Encycl. Conscious. 2, 401–410 (2009)CrossRefGoogle Scholar
  26. 26.
    Seitzman, B.A., Gratton, C., Marek, S., Raut, R.V., Dosenbach, N.U., Schlaggar, B.L., Petersen, S.E., Greene, D.J.: A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. bioRxiv p. 450452 (2018)Google Scholar
  27. 27.
    Sizemore, A.E., Giusti, C., Kahn, A., Vettel, J.M., Betzel, R.F., Bassett, D.S.: Cliques and cavities in the human connectome. J. Comput. Neurosci. 44(1), 115–145 (2018). Scholar
  28. 28.
    Sizemore, A.E., Phillips-Cremins, J.E., Ghrist, R., Bassett, D.S.: The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3(3), 656–673 (2018). Scholar
  29. 29.
    Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: a research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds.) Proceedings of ICMS 2014. LNCS, vol. 8592, pp. 129–136 (2014).
  30. 30.
    Volz, K.G., Vogeley, K., Tittgemeyer, M., von Cramon, D.Y., Sutter, M.: The neural basis of deception in strategic interactions. Front. Behav. Neurosci. 9, 27 (2015)CrossRefGoogle Scholar
  31. 31.
    Wang, Y., Ng, W.C., Ng, K.S., Yu, K., Wu, T., Li, X.: An electroencephalography network and connectivity analysis for deception in instructed lying tasks. PLoS One 10(2), e0116522 (2015)CrossRefGoogle Scholar
  32. 32.
    Yin, L., Weber, B.: I lie, why don’t you: neural mechanisms of individual differences in self-serving lying. Hum. Brain Mapp. 40(4), 1101–1113 (2019)CrossRefGoogle Scholar
  33. 33.
    Lin, X., Fu, G., Sai, L., Chen, H., Yang, J., Wang, M., Liu, Q., Yang, G., Zhang, J., Zhang, J., et al.: Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy. Sci. Rep. 6, 25297 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Irina Knyazeva
    • 1
    • 3
    • 4
    Email author
  • Maxim Kireev
    • 1
    • 2
  • Ruslan Masharipov
    • 2
  • Maya Zheltyakova
    • 1
    • 2
  • Alexander Korotkov
    • 2
  • Makarenko Nikolay
    • 3
    • 4
  • Medvedev Svyatoslav
    • 2
  1. 1.Saint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.N.P. Bechtereva Institute of the Human Brain, Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Information and Computational TechnologiesAlmatyKazakhstan
  4. 4.Central Astronomical Observatory at RASSt. PetersburgRussia

Personalised recommendations