Advertisement

Network Influence Based Classification and Comparison of Neurological Conditions

  • Ruaridh ClarkEmail author
  • Niia Nikolova
  • Malcolm Macdonald
  • William McGeown
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)

Abstract

Variations in the influence of brain regions are used to classify neurological conditions by identifying eigenvector-based communities in connectivity matrices, generated from resting state functional magnetic resonance imaging scans. These communities capture the network influence of each brain region, revealing that the subjects with Alzheimer’s disease (AD) have a significantly lower degree of variation in their most influential brain regions when compared with healthy control (HC) and amnestic mild cognitive impairment (aMCI) subjects. Classification of subjects based on their pattern of influential regions is demonstrated with neural networks identifying HC, aMCI and AD subjects. The difference between these conditions are investigated by altering brain region influence so that a neural network changes a subject’s classification. This conversion is performed on healthy subjects changing to aMCI or AD, and for aMCI subjects changing to AD. The results highlight potential compensatory mechanisms that increase or maintain functional connectivity in certain regions for those with aMCI, such as in the right parahippocampal gyrus and regions in the default mode network, but these same regions experience significant decline in those that convert from aMCI to AD.

Keywords

Functional connectivity Community detection Dementia 

References

  1. 1.
    Dawe, B., Procter, A., Philpot, M.: Concepts of mild memory impairment in the elderly and their relationship to dementia—a review. Int. J. Geriatr. Psychiatry 7(7), 473–479 (1992)CrossRefGoogle Scholar
  2. 2.
    Apostolova, L.G., Dutton, R.A., Dinov, I.D., Hayashi, K.M., Toga, A.W., Cummings, J.L., Thompson, P.M.: Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch. Neurol. 63(5), 693–699 (2006)CrossRefGoogle Scholar
  3. 3.
    Dickerson, B.C., Salat, D.H., Bates, J.F., Atiya, M., Killiany, R.J., Greve, D.N., Dale, A.M., Stern, C.E., Blacker, D., Albert, M.S., Sperling, R.A.: Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol. 56(1), 27–35 (2004).  https://doi.org/10.1002/ana.20163CrossRefGoogle Scholar
  4. 4.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994).  https://doi.org/10.1002/hbm.460020107CrossRefGoogle Scholar
  5. 5.
    Clark, R., Punzo, G., Macdonald, M.: Network communities of dynamical influence. arXiv (2019). arXiv:1908.10129
  6. 6.
    Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B.: Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), e1001066 (2011)CrossRefGoogle Scholar
  7. 7.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS), p. 107 (2000)Google Scholar
  8. 8.
    Suk, H.I., Lee, S.W., Shen, D., A.D.N. Initiative: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015)CrossRefGoogle Scholar
  9. 9.
    Hojjati, S.H., Ebrahimzadeh, A., Khazaee, A., Babajani-Feremi, A., A.D.N. Initiative: Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J. Neurosci. Methods 282, 69–80 (2017)CrossRefGoogle Scholar
  10. 10.
    Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A.: Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 10(3), 799–817 (2016)CrossRefGoogle Scholar
  11. 11.
    Khazaee, A., Ebrahimzadeh, A., Babajani-Feremi, A., A.D.N. Initiative: Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav. Brain Res. 322, 339–350 (2017)CrossRefGoogle Scholar
  12. 12.
    Forouzannezhad, P., Abbaspour, A., Fang, C., Cabrerizo, M., Loewenstein, D., Duara, R., Adjouadi, A.: A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer’s disease. J. Neurosci. Methods 317, 121–140 (2019).  https://doi.org/10.1016/j.jneumeth.2018.12.012CrossRefGoogle Scholar
  13. 13.
    Mascali, D., DiNuzzo, M., Gili, T., Moraschi, M., Fratini, M., Maraviglia, B., Serra, L., Bozzali, M., Giove, F.: Resting-state fMRI in dementia patients (2015). Harvard Dataverse.  https://doi.org/10.7910/DVN/29352
  14. 14.
    McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M.: Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944 (1984).  https://doi.org/10.1212/wnl.34.7.939CrossRefGoogle Scholar
  15. 15.
    Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L., Winblad, B.: Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992 (2001).  https://doi.org/10.1001/archneur.58.12.1985CrossRefGoogle Scholar
  16. 16.
    Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).  https://doi.org/10.1089/brain.2012.0073CrossRefGoogle Scholar
  17. 17.
    Ashburner, J., Friston, K.J.: Unified segmentation. NeuroImage 26, 839–851 (2005).  https://doi.org/10.1016/j.neuroimage.2005.02.018CrossRefGoogle Scholar
  18. 18.
    Alakörkkö, T., Saarimäki, H., Glerean, E., et al.: Effects of spatial smoothing on functional brain networks. Eur. J. Neurosci. 46(9), 2471–2480 (2017)CrossRefGoogle Scholar
  19. 19.
    Behzadi, Y., Restom, K., Liau, J., Liu, T.T.: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).  https://doi.org/10.1016/j.neuroimage.2007.04.042CrossRefGoogle Scholar
  20. 20.
    Smith, K., Azami, H., Parra, M.A., Starr, J.M., Escudero, J.: Cluster-span threshold: an unbiased threshold for binarising weighted complete networks in functional connectivity analysis. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 147, pp. 2840–2843. IEEE (2015).  https://doi.org/10.1109/EMBC.2015.7318983
  21. 21.
    Smith, K., Abasolo, D., Escudero, J.: A comparison of the cluster-span threshold and the union of shortest paths as objective thresholds of EEG functional connectivity networks from Beta activity in Alzheimer’s disease. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2826–2829. IEEE, August 2016Google Scholar
  22. 22.
    Mathworks: nprtool: Neural Net Pattern Recognition tool (r2019a) (2019). https://uk.mathworks.com/help/deeplearning/ref/nprtool.html. Accessed 16 Aug 2019
  23. 23.
    Mathworks: crossentropy: Neural Network performance (r2019a) (2019). https://uk.mathworks.com/help/deeplearning/ref/crossentropy.html. Accessed 16 Aug 2019
  24. 24.
    Mathworks: fminunc Unconstrained Minimization (r2019a) (2019). http://uk.mathworks.com/help/optim/ug/fminunc-unconstrained-minimization.html. Accessed 16 Aug 2019
  25. 25.
    Gili, T., Cercignani, M., Serra, L., Perri, R., Giove, F., Maraviglia, B., Caltagirone, C., Bozzali, M.: Regional brain atrophy and functional disconnection across Alzheimer’s disease evolution. J. Neurol. Neurosurg. Psychiatry 82(1), 58–66 (2011).  https://doi.org/10.1136/jnnp.2009.199935CrossRefGoogle Scholar
  26. 26.
    Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., Li, K.: Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31(2), 496–504 (2006)CrossRefGoogle Scholar
  27. 27.
    Allen, G., Barnard, H., McColl, R., et al.: Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64(10), 1482–1487 (2007).  https://doi.org/10.1001/archneur.64.10.1482CrossRefGoogle Scholar
  28. 28.
    Rombouts, S.A.R.B., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P.: Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 26(4), 231–239 (2005).  https://doi.org/10.1002/hbm.20160CrossRefGoogle Scholar
  29. 29.
    Binnewijzend, M.A., Schoonheim, M.M., Sanz-Arigita, E., Wink, A.M., van der Flier, W.M., Tolboom, N., Adriaanse, S.M., Damoiseaux, J.S., Scheltens, P., van Berckel, B.N., Barkhof, F.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33(9), 2018–2028 (2012).  https://doi.org/10.1016/j.neurobiolaging.2011.07.003CrossRefGoogle Scholar
  30. 30.
    Hafkemeijer, A., Möller, C., Dopper, E.G., Jiskoot, L.C., Schouten, T.M., van Swieten, J.C., van der Flier, W.M., Vrenken, H., Pijnenburg, Y.A., Barkhof, F., Scheltens, P.: Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease. Front. Human Neurosci. 9, 474 (2015).  https://doi.org/10.3389/fnhum.2015.00474CrossRefGoogle Scholar
  31. 31.
    Brun, A., Englund, E.: Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 5(5), 549–564 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ruaridh Clark
    • 1
    Email author
  • Niia Nikolova
    • 2
  • Malcolm Macdonald
    • 1
  • William McGeown
    • 2
  1. 1.Mechanical & Aerospace EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK

Personalised recommendations