Empirical Analysis of a Global Capital-Ownership Network

  • Sammy KhalifeEmail author
  • Jesse Read
  • Michalis Vazirgiannis
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


Ownership relationships between legal entities can be represented as a large directed and weighted graph. This paper provides a methodology and an empirical analysis of such network, composed of millions of nodes and edges. To do so, we employ a variety of metrics from graph analytics and algorithms from influence maximization (IM). For reasons of confidentiality, our empirical analysis is carried out on aggregation at country and sector level, analysing in details the case of France. Our results offer new type of intuitions and metrics in this area by highlighting the existence of strong communities of capitalistic property. Finally, we discuss influence maximization methods as means to evaluate an entity impact in the socialistic graph.


Complex networks Legal entities Capitalistic graphs Centrality measures Graph degeneracy Influence maximization 


  1. 1.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378 (2000)CrossRefGoogle Scholar
  2. 2.
    Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. arXiv preprint arXiv:cs/0310049 (2003)
  3. 3.
    Boss, M., Elsinger, H., Summer, M., Thurner, S.: Network topology of the interbank market. Quant. Financ. 4(6), 677–684 (2004)CrossRefGoogle Scholar
  4. 4.
    Dijk, B.V.: Source: Orbis, bureau van dijkGoogle Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)Google Scholar
  6. 6.
    Giatsidis, C., Nikolentzos, G., Zhang, C., Tang, J., Vazirgiannis, M.: Rooted citation graphs density metrics for research papers influence evaluation. J. Informetr. 13(2), 757–768 (2019)CrossRefGoogle Scholar
  7. 7.
    Inaoka, H., Ninomiya, T., Taniguchi, K., Shimizu, T., Takayasu, H., et al.: Fractal network derived from banking transaction-an analysis of network structures formed by financial institutions. Bank of Japan Working Paper 4 (2004)Google Scholar
  8. 8.
    Lenzu, S., Tedeschi, G.: Systemic risk on different interbank network topologies. Physica A Stat. Mech. Appl. 391(18), 4331–4341 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)CrossRefGoogle Scholar
  10. 10.
    Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a Python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018)CrossRefGoogle Scholar
  11. 11.
    Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the as-level internet topology. IEEE/ACM Trans. Networking 11(4), 514–524 (2003)CrossRefGoogle Scholar
  12. 12.
    Soramäki, K., Bech, M.L., Arnold, J., Glass, R.J., Beyeler, W.E.: The topology of interbank payment flows. Physica A Stat. Mech. Appl. 379(1), 317–333 (2007)CrossRefGoogle Scholar
  13. 13.
    Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1539–1554. ACM (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sammy Khalife
    • 1
    Email author
  • Jesse Read
    • 1
  • Michalis Vazirgiannis
    • 1
  1. 1.LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de ParisPalaiseauFrance

Personalised recommendations