A Network Structure Analysis of Economic Crises

  • Maximilian GöbelEmail author
  • Tanya Araújo
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


Do countries with similar macroeconomic dynamics during pre-crisis times experience a common subsequent crisis-, respectively non-crisis-, status? Based on the Euclidean distance, a community structure detection algorithm generates the network topology of four distinct pre-crisis periods between 1990 and 2008 comprising 27 countries. The desired outcome is a clear-cut separation of future crisis from non-crisis economies. The approach succeeds in uncovering prominent cluster formations, whereas period-specific heatmaps reveal the time-varying importance of the considered indicators. The heterogeneous cluster-formation does not allow to infer any dynamics, which would unambiguously hint at an upcoming crisis event.


Clustering Crisis prediction Macroeconomic dynamics 


  1. 1.
    Araújo, T., Göbel, M.: Reframing the S&P 500 network of stocks along the 21st century. Phys. A: Stat. Mech. Appl. 526, 121062 (2019). Scholar
  2. 2.
    Berg, A., Pattillo, C.: Predicting currency crises: the indicators approach and an alternative. J. Int. Money Financ. 18, 561–586 (1999)CrossRefGoogle Scholar
  3. 3.
    Berg, A., Pattillo, C.: What caused the asian crises: an early warning system approach. Economic Notes by Banca Monte dei Paschi di Siena SpA 28(3), 285–334 (1999b)Google Scholar
  4. 4.
    Blondel, V.D., Guillaume, J.-L., Lamboitte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 10, 1–12 (2008)zbMATHGoogle Scholar
  5. 5.
    Eichengreen, B., Rose, A.K., Wyplosz, C.: Exchange market mayhem: the antecedents and aftermath of speculative attacks. University of California, Berkeley (1995). Accessed 16 July 2019CrossRefGoogle Scholar
  6. 6.
    Fioramanti, M.: Predicting sovereign debt crises using artificial neural networks: a comparative approach. J. Financ. Stab. 4, 149–164 (2008)CrossRefGoogle Scholar
  7. 7.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)CrossRefGoogle Scholar
  8. 8.
    Fuertes, A.-M., Kalotychou, E.: Optimal design of early warning systems for sovereign debt crises. Int. J. Forecast 23, 85–100 (2007)CrossRefGoogle Scholar
  9. 9.
    Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability, p. 71. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  10. 10.
    International Monetary Fund: World Economic Outlook: Challenges to Steady Growth, Washington DC, pp. 71–100 (2018)Google Scholar
  11. 11.
    Isogai, T.: Clustering of Japanese stock returns: statistical analysis of the correlation structure of fat-tailed returns. Dissertation, Japan Advanced Institute of Science and Technology (2015)Google Scholar
  12. 12.
    Kaminsky, G.L., Reinhart, C.M.: The twin crises: the causes of banking and balance-of-payments problems. International Finance Discuss Paper 544 (1996)Google Scholar
  13. 13.
    Kaminsky, G.L., Lizondo, S., Reinhart, C.M.: Leading indicators of currency crises. IMF Staff Pap. 45(1), 1–48 (1998)CrossRefGoogle Scholar
  14. 14.
    Kaminsky, G.L., Mati, A., Choueiri, N.: Thirty years of currency crises in Argentina: external shocks or domestic fragility? NBER Working Paper 15478 (2009)Google Scholar
  15. 15.
    Krugman, P.: A model of balance of payments crises. J. Money Credit Bank 11, 311–325 (1979)CrossRefGoogle Scholar
  16. 16.
    Krugman, P.: Balance sheets, the transfer problem, and financial crises. Int. Tax. Public Financ. 6, 459–472 (1999)CrossRefGoogle Scholar
  17. 17.
    Laeven, L., Valencia, F.: Systemic banking crises revisited. IMF Working Paper WP/18/206 (2018)Google Scholar
  18. 18.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  19. 19.
    Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys J. B. 11, 193–197 (1999)CrossRefGoogle Scholar
  20. 20.
    Marghescu, D.R., Sarlin, P., Liu, S.: Early-warning analysis for currency crises in emerging markets: a revisit with fuzzy clustering. Intell. Syst. Acc. Financ. Manag. 17, 143–165 (2010)CrossRefGoogle Scholar
  21. 21.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  22. 22.
    Nunn, N., Quian, N., Wen, J.: Distrust and political turnover. NBER Working Paper Series 24187 (2018)Google Scholar
  23. 23.
    Obstfeld, M.: The logic of currency crises. NBER Working Paper Series 4640 (1994)Google Scholar
  24. 24.
    Obstfeld, M.: Models of currency crises with self-fulfilling features. Eur. Econ. Rev. 40, 1037–1047 (1996)CrossRefGoogle Scholar
  25. 25.
    Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98, 1259–1319 (1993)CrossRefGoogle Scholar
  26. 26.
    Piccardi, C., Calatroni, L., Bertoni, F.: Clustering financial time series by network community analysis. Int. J. Mod. Phys. C 22(1), 35–50 (2011)CrossRefGoogle Scholar
  27. 27.
    Reinhart, C.M., Rogoff, K.S.: Is the 2007 U.S. sub-prime financial crisis so different? An international historical comparison. NBER Working Paper 14587 (2008)Google Scholar
  28. 28.
    Reinhart, C.M., Rogoff, K.S.: This Time is Different: Eight Centuries of Financial Folly. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
  29. 29.
    Ristolainen, K.: Predicting banking crises with artificial neural networks: the role of nonlinearity and heterogeneity. Scand. J. Econ. 120(1), 31–62 (2018)CrossRefGoogle Scholar
  30. 30.
    Sarlin, P.: On biologically inspired predictions of the global financial crisis. Neural Comput. Appl. 24, 663–673 (2014)CrossRefGoogle Scholar
  31. 31.
    Sarlin, P., Marghescu, D.R.: Visual predictions of currency crises using self-organizing maps. Intell. Syst. Acc. Financ. Manag. 18(1), 15–38 (2011)CrossRefGoogle Scholar
  32. 32.
    Spelta, A., Araújo, T.: The topology of cross-border exposures: beyond the minimal spanning tree approach. Phys. A: Stat. Mech. Appl. 391(22), 5572–5583 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ISEGUniversity of Lisbon and UECELisbonPortugal

Personalised recommendations