Advertisement

Roles in Social Interactions: Graphlets in Temporal Networks Applied to Learning Analytics

  • Raphaël CharbeyEmail author
  • Laurent Brisson
  • Cécile Bothorel
  • Philippe Ruffieux
  • Serge Garlatti
  • Jean-Marie Gilliot
  • Antoine Mallégol
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)

Abstract

There is a growing interest in how data generated in learning platforms, especially the interaction data, can be used to improve teaching and learning. Social network analysis and machine learning methods take advantage of network topology to detect relational patterns and model interaction behaviors. Specifically, small induced subgraphs called graphlets, provide an efficient topological description of the way each node is embedded in the meso-scale structure of a network. Here we propose to detect the roles occupied by the different participants, students and teachers, in the successive phases of courses modeled by a sequence of static snapshots. The detected positions, obtained thanks to graphlet enumeration combined with a clustering method, reveal the different roles observed in each snapshot. We also track the role changes through the overall sequence of snapshots. We apply our method to the Sqily platform and describe the mutual skill validation process. The detected roles, the transitions between roles and a overall visualization through Sankey diagrams help interpreting the course dynamics. We found that some roles act like necessary steps to engage students within an active exchange process with their classmates.

Keywords

Temporal networks Social interactions Motifs Graphlets Learning analytics Role detection 

References

  1. 1.
    Araujo, M., Papadimitriou, S., Günnemann, S., Faloutsos, C., Basu, P., Swami, A., Papalexakis, E.E., Koutra, D.: Com2: fast automatic discovery of temporal (‘comet’) communities. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 271–283. Springer (2014)Google Scholar
  2. 2.
    Authier, M., Lévy, P.: Les arbres de connaissances. La Découverte, Paris (1999). https://www.cairn.info/les-arbres-de-connaissances--9782707130440.htm
  3. 3.
    Braha, D., Bar-Yam, Y.: Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Adaptive Networks, pp. 39–50. Springer (2009)Google Scholar
  4. 4.
    Cela, K.L., Sicilia, M.Á., Sánchez, S.: Social network analysis in e-learning environments: a preliminary systematic review. Educ. Psychol. Rev. 27(1), 219–246 (2015)CrossRefGoogle Scholar
  5. 5.
    Charbey, R., Prieur, C.: Stars, holes, or paths across your facebook friends: a graphlet-based characterization of many networks. Network Sci. 1–22 (2019)Google Scholar
  6. 6.
    Dalsgaard, C.: Social software: E-learning beyond learning management systems. Eur. J. Open, Distance e-learning 9(2) (2006)Google Scholar
  7. 7.
    Dillenbourg, P.: What do you mean by collaborative learning? (1999)Google Scholar
  8. 8.
    Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data (TKDD) 5(2), 10 (2011)Google Scholar
  9. 9.
    Ferguson, R., Shum, S.B.: Social learning analytics: five approaches. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 23–33. ACM (2012)Google Scholar
  10. 10.
    Gartner, A., Kohler, M., Riessman, F., Grosjean, M.: Des enfants enseignent aux enfants: apprendre en enseignant. Hommes et groupes, Epi (1973). https://books.google.fr/books?id=y8DuPAAACAAJ
  11. 11.
    Gu, S., Milenkovic, T.: Graphlets versus node2vec and struc2vec in the task of network alignment. arXiv preprint arXiv:1805.04222 (2018)
  12. 12.
    Holland, P.W., Leinhardt, S.: Local structure in social networks. Soc. Methodol. 7, 1–45 (1976)CrossRefGoogle Scholar
  13. 13.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Reports 519(3), 97–125 (2012)CrossRefGoogle Scholar
  14. 14.
    Hulovatyy, Y., Chen, H., Milenković, T.: Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 31(12), i171–i180 (2015)CrossRefGoogle Scholar
  15. 15.
    Komarek, A., Pavlik, J., Sobeslav, V.: Network visualization survey. In: Computational Collective Intelligence, pp. 275–284. Springer (2015)Google Scholar
  16. 16.
    Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theory Exp. 2011(11), P11005 (2011)CrossRefGoogle Scholar
  17. 17.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA (1967)Google Scholar
  19. 19.
    Milenković, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer informatics 6, CIN–S680 (2008)CrossRefGoogle Scholar
  20. 20.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  21. 21.
    Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610. ACM (2017)Google Scholar
  22. 22.
    Paredes, W.C., Chung, K.S.K.: Modelling learning & performance: a social networks perspective. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. LAK 2012, pp. 34–42 ACM, New York (2012). http://doi.acm.org/10.1145/2330601.2330617
  23. 23.
    Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)CrossRefGoogle Scholar
  24. 24.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  25. 25.
    Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495 (2009)Google Scholar
  26. 26.
    Suh, H., Kang, M., Moon, K., Jang, H.: Identifying peer interaction patterns and related variables in community-based learning. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning: Learning 2005: The Next 10 Years! CSCL 2005, pp. 657–661. International Society of the Learning Sciences (2005). http://dl.acm.org/citation.cfm?id=1149293.1149379
  27. 27.
    Teplovs, C., Fujita, N., Vatrapu, R.: Generating predictive models of learner community dynamics. In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge. LAK 2011, pp. 147–152. ACM (2011)Google Scholar
  28. 28.
    Wernicke, S., Rasche, F.: Fanmod: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raphaël Charbey
    • 1
    Email author
  • Laurent Brisson
    • 1
  • Cécile Bothorel
    • 1
  • Philippe Ruffieux
    • 2
  • Serge Garlatti
    • 1
  • Jean-Marie Gilliot
    • 1
  • Antoine Mallégol
    • 1
  1. 1.IMT Atlantique, Lab-STICC UMR CNRS 6285BrestFrance
  2. 2.Usages du numérique et Didactique de l’informatique (MUNDI)LausanneSwitzerland

Personalised recommendations