Graph-Based Fraud Detection with the Free Energy Distance

  • Sylvain CourtainEmail author
  • Bertrand Lebichot
  • Ilkka Kivimäki
  • Marco Saerens
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


This paper investigates a real-world application of the free energy distance between nodes of a graph [14, 20] by proposing an improved extension of the existing Fraud Detection System named APATE [36]. It relies on a new way of computing the free energy distance based on paths of increasing length, and scaling on large, sparse, graphs. This new approach is assessed on a real-world large-scale e-commerce payment transactions dataset obtained from a major Belgian credit card issuer. Our results show that the free-energy based approach reduces the computation time by one half while maintaining state-of-the art performance in term of Precision@100 on fraudulent card prediction.


Credit card fraud detection Network science Network data analysis Free energy distance Semi-supervised learning 



This work was partially supported by the Immediate funded by Wallon Region project and by the Defeatfrauds project funded by Innoviris. We thank these institutions for giving us the opportunity to conduct both fundamental and applied research. We also thank Worldline SA/NV, R&D, for providing us the data and expertise.


  1. 1.
    Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Network Comput. Appl. 68, 90–113 (2016)CrossRefGoogle Scholar
  2. 2.
    Bahnsen, A.C., Stojanovic, A., Aouada, D., Ottersten, B.: Cost sensitive credit card fraud detection using bayes minimum risk. In: 2013 12th International Conference on Machine Learning and Applications, vol. 1, pp. 333–338. IEEE (2013)Google Scholar
  3. 3.
    Bhusari, V., Patil, S.: Study of hidden markov model in credit card fraudulent detection. Int. J. Comput. Appl. 20(5), 33–36 (2011)Google Scholar
  4. 4.
    Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 1, 235–249 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Callut, J., Francoisse, K., Saerens, M., Dupont, P.: Semi-supervised classification from discriminative random walks. In: W. Daelemans, K. Morik (eds.) Proceedings of the 19th European Conference on Machine Learning (ECML 2008), Lecture Notes in Artificial Intelligence, vol. 5211, pp. 162–177. Springer, Berlin (2008)Google Scholar
  6. 6.
    Cao, B., Mao, M., Viidu, S., Yu, P.: Collective fraud detection capturing inter-transaction dependency. In: KDD 2017 Workshop on Anomaly Detection in Finance, pp. 66–75 (2018)Google Scholar
  7. 7.
    Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: Distributed data mining in credit card fraud detection. IEEE Intell. Syst. 14(6), 67–74 (1999)CrossRefGoogle Scholar
  8. 8.
    Consultants, H.: The nilson report issue 1142 (2018).
  9. 9.
    Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Networks Learn. Syst. 29(8), 3784–3797 (2018)CrossRefGoogle Scholar
  10. 10.
    Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41(10), 4915–4928 (2014)CrossRefGoogle Scholar
  11. 11.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. learn. res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Duman, E., Elikucuk, I.: Solving credit card fraud detection problem by the new metaheuristics migrating birds optimization. In: International Work-Conference on Artificial Neural Networks, pp. 62–71. Springer, Berlin (2013)CrossRefGoogle Scholar
  13. 13.
    Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and Link Analysis. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  14. 14.
    Françoisse, K., Kivimäki, I., Mantrach, A., Rossi, F., Saerens, M.: A bag-of-paths framework for network data analysis. Neural Networks 90, 90–111 (2017)CrossRefGoogle Scholar
  15. 15.
    Gondran, M., Minoux, M.: Graphs and Algorithms. Wiley, Hoboken (1984)zbMATHGoogle Scholar
  16. 16.
    Guex, G., Courtain, S., Saerens, M.: Covariance and correlation kernels on a graph in the generalized bag-of-paths formalism. arXiv preprint arXiv:1902.03002 (2019)
  17. 17.
    Huang, X., Ariki, Y., Jack, M.: Hidden Markov Models for Speech Recognition. Edinburgh University Press, Edinburgh (1990)Google Scholar
  18. 18.
    Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.E., He-Guelton, L., Caelen, O.: Sequence classification for credit-card fraud detection. Expert Syst. Appl. 100, 234–245 (2018)CrossRefGoogle Scholar
  19. 19.
    Kivimäki, I.: Distances, centralities and model estimation methods based on randomized shortest paths for network data analysis. Ph.D. thesis, UCL-Université Catholique de Louvain (2018)Google Scholar
  20. 20.
    Kivimäki, I., Shimbo, M., Saerens, M.: Developments in the theory of randomized shortest paths with a comparison of graph node distances. Physica A 393, 600–616 (2014)CrossRefGoogle Scholar
  21. 21.
    Lebichot, B., Braun, F., Caelen, O., Saerens, M.: A graph-based, semi-supervised, credit card fraud detection system. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) International Workshop on Complex Networks and their Applications, pp. 721–733. Springer, Cham (2016)Google Scholar
  22. 22.
    Liu, Q., Wu, Y.: Supervised learning. Encyclopedia of the Sciences of Learning, pp. 3243–3245 (2012)CrossRefGoogle Scholar
  23. 23.
    Mantrach, A., Van Zeebroeck, N., Francq, P., Shimbo, M., Bersini, H., Saerens, M.: Semi-supervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recogn. 44(6), 1212–1224 (2011)CrossRefGoogle Scholar
  24. 24.
    Molloy, I., Chari, S., Finkler, U., Wiggerman, M., Jonker, C., Habeck, T., Park, Y., Jordens, F., van Schaik, R.: Graph analytics for real-time scoring of cross-channel transactional fraud. In: Grossklags, J., Preneel, B. (eds.) International Conference on Financial Cryptography and Data Security, vol. 9603, pp. 22–40. Springer, Berlin (2016)CrossRefGoogle Scholar
  25. 25.
    Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT press, Cambridge (2012)zbMATHGoogle Scholar
  26. 26.
    Ngai, E.W., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decision Support Systems 50(3), 559–569 (2011)CrossRefGoogle Scholar
  27. 27.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  28. 28.
    Ramaki, A.A., Asgari, R., Atani, R.E.: Credit card fraud detection based on ontology graph. Int. J. Secur. Priv. Trust Manag. (IJSPTM) 1(5), 1–12 (2012)CrossRefGoogle Scholar
  29. 29.
    Sánchez, D., Vila, M., Cerda, L., Serrano, J.M.: Association rules applied to credit card fraud detection. Expert syst. appl. 36(2), 3630–3640 (2009)CrossRefGoogle Scholar
  30. 30.
    Shen, A., Tong, R., Deng, Y.: Application of classification models on credit card fraud detection. In: 2007 International conference on service systems and service management, pp. 1–4. IEEE (2007)Google Scholar
  31. 31.
    Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clustering tasks. In: Artificial Neural Networks and Machine Learning – Proceedings of ICANN 2016. Lecture Notes in Computer Science, vol. 9886, 192–201. Springer Cham (2016)Google Scholar
  32. 32.
    Sommer, F., Fouss, F., Saerens, M.: Modularity-driven kernel k-means for community detection. Artificial Neural Networks and Machine Learning (Proceedings of ICANN 2016. Lecture Notes in Computer Science, vol. 10614, pp. 423–433. Springer, Cham (2017)CrossRefGoogle Scholar
  33. 33.
    Srivastava, A., Kundu, A., Sural, S., Majumdar, A.: Credit card fraud detection using hidden markov model. IEEE Trans. dependable secure comput. 5(1), 37–48 (2008)CrossRefGoogle Scholar
  34. 34.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press Inc., Cambridge (2008)zbMATHGoogle Scholar
  35. 35.
    Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applications. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 613–622. IEEE (2006)Google Scholar
  36. 36.
    Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akogu, L., Snoeck, M., Baesens, B.: Apate: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015)CrossRefGoogle Scholar
  37. 37.
    Weston, D.J., Hand, D.J., Adams, N.M., Whitrow, C., Juszczak, P.: Plastic card fraud detection using peer group analysis. Adv. Data Anal. Classif. 2(1), 45–62 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wheeler, R., Aitken, S.: Multiple algorithms for fraud detection. In: Ellis, R., Moulton, M., Coenen, F. (eds.) Applications and Innovations in Intelligent Systems VII, pp. 219–231. Springer, London (2000)CrossRefGoogle Scholar
  39. 39.
    Zaslavsky, V., Strizhak, A.: Credit card fraud detection using self-organizing maps. Inf. Secur. 18, 48 (2006)Google Scholar
  40. 40.
    Zhang, Z., Zhou, X., Zhang, X., Wang, L., Wang, P.: A model based onconvolutional neural network for online transaction fraud detection. Secur. Commun. Networks 2018, 9 (2018)Google Scholar
  41. 41.
    Zhou, X., Cheng, S., Zhu, M., Guo, C., Zhou, S., Xu, P., Xue, Z., Zhang, W.: A state of the art survey of data mining-based fraud detection and credit scoring. In: MATEC Web of Conferences, vol. 189. EDP Sciences, Les Ulis (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sylvain Courtain
    • 1
    Email author
  • Bertrand Lebichot
    • 1
    • 3
  • Ilkka Kivimäki
    • 4
  • Marco Saerens
    • 1
    • 2
  1. 1.LOURIM, Université catholique de LouvainOttignies-Louvain-la-NeuveBelgium
  2. 2.ICTEAM, Université catholique de LouvainOttignies-Louvain-la-NeuveBelgium
  3. 3.MLG, Université Libre de BruxellesBrusselsBelgium
  4. 4.Department of Computer ScienceAalto UniversityEspooFinland

Personalised recommendations