Impact of Natural and Social Events on Mobile Call Data Records – An Estonian Case Study
Abstract
Mobile Call Data Records (CDR) can be used for identifying human behavior. For example, researchers have studied mobile CDR to understand the social fabric of a country or for predicting the human mobility patterns. Additionally, CDR data has been combined with external data, for example, financial data to understand socio-economic patterns. In this paper, we study an anonymised CDR dataset provided by one of the biggest mobile operators in Estonia with two objectives. First, we explore the data to identify and interpret social network patterns. Our study points that mobile calling network is fragmented and sparse in Estonia. Second, we study the impact of natural and social events on mobile call activity. Our results show that these activities do have an impact on the calling activity. To the best of our knowledge, this is the first study, which has analysed the impact of varied types of events on mobile calling activity specifically in Estonian landscape.
Keywords
Mobile Call Data Records Social network analysis Sociocultural analysisNotes
Acknowledgments
This work has been supported in part by EU H2020 project SoBigData and Estonian Research Council project Understanding the Vicious Circles of Segregation. A Geographic Perspective (PUT PRG306). We are also thankful to Estonian mobile operator for providing us the data.
References
- 1.Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994) Google Scholar
- 2.Lambiotte, R., Blondel, V., de Kerchove, C., Huens, E., Prieur, C., Smoreda, Z., Van Dooren, P.: Geographical dispersal of mobile communication networks. Phys. A 387, 5317–5325 (2008)CrossRefGoogle Scholar
- 3.Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)CrossRefGoogle Scholar
- 4.Ponieman, N.B., Sarraute, C., Minnoni, M., Travizano, M., Rodriguez Zivic, P., Salles, A.: Mobility and sociocultural events in mobile phone data records. AI Commun. 29, 77–86 (2015)MathSciNetCrossRefGoogle Scholar
- 5.Song, C., Zehui, Q., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)MathSciNetCrossRefGoogle Scholar
- 6.Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)CrossRefGoogle Scholar
- 7.Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., Willinger, W.: Human mobility modeling at metropolitan scales. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys 2012, pp. 239–252. ACM, New York (2012)Google Scholar
- 8.Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tatem, A.J.: Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. 111(45), 15888–15893 (2014) CrossRefGoogle Scholar
- 9.Williams, N.E., Thomas, T.A., Dunbar, M., Eagle, N., Dobra, A.: Measures of human mobility using mobile phone records enhanced with GIS data. CoRR, abs/1408.5420 (2014)Google Scholar
- 10.Sørensen, A.Ø., Bjelland, J., Bull-Berg, H., Landmark, A.D., Akhtar, M.M., Olsson, N.O.: Use of mobile phone data for analysis of number of train travellers. J. Rail Transp. Plan. Manage. 8(2), 123–144 (2018)Google Scholar
- 11.Leo, Y., Karsai, M., Sarraute, C., Fleury, E.: Correlations of consumption patterns in social-economic networks. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016, pp. 493–500 (2016)Google Scholar
- 12.Horanont, T., Phithakkitnukoon, S., Leong, T.W., Sekimoto, Y., Shibasaki, R.: Weather effects on the patterns of people’s everyday activities: a study using GPS traces of mobile phone users. PLoS ONE 8, e81153 (2013)CrossRefGoogle Scholar
- 13.Eagle, N., Pentland, A.(Sandy), Lazer, D.: Mobile phone data for inferring social network structure. In: Liu, H., Salerno, J.J., Young, M.J. (eds.) Social Computing, Behavioral Modeling, and Prediction, pp. 79–88. Springer, Boston (2008)Google Scholar
- 14.Ahas, R., Mark, Ü.: Location based services—new challenges for planning and public administration? Futures 37(6), 547–561 (2005)CrossRefGoogle Scholar
- 15.Farrahi, K., Emonet, R., Cebrian, M.: Predicting a community’s flu dynamics with mobile phone data. In: Computer-Supported Cooperative Work and Social Computing, Vancouver, Canada, March 2015Google Scholar
- 16.Singh, V.K., Freeman, L., Lepri, B., Pentland, A.: Predicting spending behavior using socio-mobile features. In: International Conference on Social Computing, SocialCom, Washington, DC, USA, pp. 174–179 (2013)Google Scholar
- 17.Ratti, C., Frenchman, D., Pulselli, R.M., Williams, S.: Mobile landscapes: using location data from cell phones for urban analysis. Environ. Plan. 33(5), 727–748 (2006)CrossRefGoogle Scholar
- 18.Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C.: The path most traveled: travel demand estimation using big data resources. Transp. Res. Part C Emerg. Technol. 58, 162–177 (2015). Big Data in Transportation and Traffic EngineeringCrossRefGoogle Scholar
- 19.Ahas, R., Aasa, A., Mark, Ü., Pae, T., Kull, A.: Seasonal tourism spaces in Estonia: case study with mobile positioning data. Tour. Manag. 28, 898–910 (2007)CrossRefGoogle Scholar
- 20.Kumar, M., Hanumanthappa, M., Kumar, T.V.S.: Crime investigation and criminal network analysis using archive call detail records. In: 2016 Eighth International Conference on Advanced Computing (ICoAC), pp. 46–50, January 2017Google Scholar
- 21.Khan, E.S., Azmi, H., Ansari, F., Dhalvelkar, S.: Simple implementation of criminal investigation using call data records (CDRs) through big data technology. In: 2018 International Conference on Smart City and Emerging Technology (ICSCET), pp. 1–5, January 2018Google Scholar
- 22.Kuufaaside kalender. marts 2015. https://ilm.pri.ee/kuufaaside-kalender?month=3&year=2015
- 23.Tana öösel näeme taiskuud (2015). https://ilm.ee/?513460
- 24.Moon phases, March 2015. https://www.calendar-12.com/moon_calendar/2015/march