Advertisement

Assessment of Mechanical and Thermal Performances of a Ceramic Product Incorporating an Industrial Waste

  • Achraf Bakkali YedriEmail author
  • Mohammed Ammari
  • Laïla Ben Allal
Conference paper
  • 25 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)

Abstract

Over the last few years, several industries located in Morocco generate critical amounts of sludge mainly issued from the industrial wastewater treatment. These untreated residues are dumped, mostly, in landfills causing serious environmental issues.

Bricks are widely used in construction and building materials around the world. Conventional bricks are produced from natural clay with high temperature kiln firing. Extensive research has been conducted on production of bricks from waste materials for environmental protection and sustainable development.

This work deals to produce bricks for construction by mixing the sludge providing from an industrial wastewater treatment with natural clay. The studied sludge was characterized in terms of its composition and the natural clay was supplied by a local factory.

The bricks samples were prepared by incorporating from 10% to 70% of the sludge and by firing at the temperature around 920 °C. Tests were performed to determine the compressive strength, porosity, water absorption and bulk density. These tests showed that the physical, mechanical and Thermal properties of the bricks are depending on the amount of the sludge incorporated.

Samples containing up to 50% of sludge still have high values of mechanical resistance than the control bricks. The optimal result for the thermal conductivity is 0,095 relative to 60% of the incorporated sludge.

The added waste has improved bricks conductivity properties compared to control bricks made without any waste.

Keywords

Sludge Clay Bricks Compressive strength Thermal conductivity 

References

  1. 1.
    Loi 28-00 relative à la gestion des déchets et à leur éliminationGoogle Scholar
  2. 2.
    Mekki, H., Ammar, E., Anderson, M., Ben Zina, M.: Recyclage des déchets de la trituration des olives dans les briques de construction. Ann. J. Chim. Sci. Matér. 28, 109–127 (2003)CrossRefGoogle Scholar
  3. 3.
    Tay, J.H., Show, K.Y.: Use of ash derived from oil-palm waste incineration as a cement replacement material. Resour. J. Conserv. Recycl. 191–204 (1992)Google Scholar
  4. 4.
    Frar, I., Ben Allal, L., Ammari, M., Azmani, A.: Utilisation des sédiments de dragage portuaire comme matière première dans la fabrication des briques en terre cuite. Mater. Environ. Sci 5, 390–399 (2014)Google Scholar
  5. 5.
    Herek, L.C.S., Hori, C.E., Reis, M.H.M., Mora, N.D., Tavares, C.R.G., Bergamasco, R.: Characterization of ceramic bricks incorporated with textile laundry sludge. J. Ceram. Int. 38, 951–959 (2012)CrossRefGoogle Scholar
  6. 6.
    Yellishetty, M., Karpe, V., Reddy, E.H.: Reuse of iron ore mineral wastes in civil engineering constructions. J. Resour. Conserv. Recycl. 1983–1989 (2008)Google Scholar
  7. 7.
    NFX 31-101 NF ISO 11464: Prétraitement des échantillons pour analyses physico-chimiques (1994)Google Scholar
  8. 8.
    ISO 13320 Analyse granulométrique (1999)Google Scholar
  9. 9.
    NQ 2560-255: Essai au bleu de méthylène, pp. 257–262 (1986)Google Scholar
  10. 10.
    Handisyde, C.C., Haseltine, B.A.: Bricks: Properties and Classifications. Bricks and Brickwork, London (1976)Google Scholar
  11. 11.
    Ross, K., Butlin, R.N.: Durability Tests for Building Stone. Garston, Watford (1989)Google Scholar
  12. 12.
    ASTM C 67-03a: Standard test methods for sampling and testing brick and structural clay tile (2003)Google Scholar
  13. 13.
    Chen, Y., Zhang, Y., Chen, T., Zhao, Y., Bao, S.: Preparation of eco-friendly construction bricks from hematite tailings. J. Constr. Build. Mater. 25, 2107–2111 (2011)CrossRefGoogle Scholar
  14. 14.
    Mourtada, A.: Comportement thermique des mortiers d’isolation extérieur du bâtiment. Thèse de Docteur-Ingénieur, INSA de Lyon et UCB Lyon I, France (1982)Google Scholar
  15. 15.
    Menguy, G., Laurent, M., Moutarda, A., Leveau, J.: Cellule de mesure des caractéristiques thermophysiques des matériaux E1700. Société Weber Broutin, Bulletin technique: Deltalab (1986)Google Scholar
  16. 16.
    Mourtada, A.: Caractérisation thermique des parois opaques et transparentes du bâtiment. Thèse de Doctorat d’Etat, Université Claude Bernard Lyon I, France (1988)Google Scholar
  17. 17.
    Driss, T., Abdelmajid, E.B., Friedrich, S., Abdelaziz, M., Hassan, E., Tayed, A.: Moisture content influence on the thermal conductivity and diffusivity of wood–concrete composite. J. Constr. Build. Mater. 48, 104–115 (2013)CrossRefGoogle Scholar
  18. 18.
    Nonthaphong, P.: Effects of additive on the physical and thermal Conductivity of fired clay brick. J. Chem. Sci. Technol. 2, 95–99 (2013)Google Scholar
  19. 19.
    Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity-heat capacity and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Achraf Bakkali Yedri
    • 1
    Email author
  • Mohammed Ammari
    • 1
  • Laïla Ben Allal
    • 1
  1. 1.Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of TangierTangierMorocco

Personalised recommendations