A Review of Research on the Treatment of Metallic Pollution by Using a Green Construction Material

  • El Fellah ImadEmail author
  • Ammari Mohammed
  • Ben Allal Laïla
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)


Nowadays, the discharge of a large number of pollutants from industrial and natural sources contaminated by heavy metals is a great challenge due to its threat to health and environment. Immobilization is one of the most widely used methods for treating this problem. Geopolymers are aluminosilicate inorganic polymers used as good binders in immobilization of heavy metals due to high efficiency, good surface properties, and amorphous structure. This review summarizes the research work carried out on the immobilization of heavy metals, with geopolymers binders. The performance of geopolymers in immobilization of heavy metals depends on several parameters mainly source materials, nature of metals, Syntheses method of geopolymer and medium of leaching. Future researches should focus on the utilisation of other industrial waste as geopolymers binder in the immobilization process.


Heavy metals Geopolymers Immobilization Pollution 


  1. 1.
    Fergusson, J.E.: The heavy elements : chemistry, environmental impact, and health effects, 1st edn. Pergamon Press, Oxford (1990)Google Scholar
  2. 2.
    Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J.: Heavy Metals Toxicity and the Environment. EXS 101, 133–164 (2012)Google Scholar
  3. 3.
    Hills, C.D., Sollars, C.J., Perry, R.: Ordinary portland cement based solidification of toxic wastes: The role of OPC reviewed. Cem. Concr. Res. 23(1), 196–212 (1993)CrossRefGoogle Scholar
  4. 4.
    Davidovits, J.: Global Warming Impact on the Cement and Aggregates Industries, p. 23 (1994) Google Scholar
  5. 5.
    Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)CrossRefGoogle Scholar
  6. 6.
    van Deventer, J.S.J., Provis, J.L., Duxson, P., Lukey, G.C.: Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. 139(3), 506–513 (2007)CrossRefGoogle Scholar
  7. 7.
    Davidovits, J., Buzzi, L., Rocher, P., Gimeno, D., Marini, C., Tocco, S.: Geopolymeric cement based on low cost geologic material, results from the European Research project GEOCISTEM, pp. 83–96 (1999)Google Scholar
  8. 8.
    Davidovits, J.: Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)CrossRefGoogle Scholar
  9. 9.
    Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation, 25 August 2010. Accessed 09 Apr 2019
  10. 10.
    Bakkali, H., Ammari, M., Frar, I.: NaOH alkali-activated class F fly ash: NaOH molarity, curing conditions and mass ratio effect. J. Mater. Environ. Sci. 7(2), 397–401 (2016)Google Scholar
  11. 11.
    Xia, M., et al.: Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 209, 1206–1215 (2019)CrossRefGoogle Scholar
  12. 12.
    El-Eswed, B.I., Aldagag, O.M., Khalili, F.I.: Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 140, 148–156 (2017)CrossRefGoogle Scholar
  13. 13.
    Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157(2–3), 587–598 (2008)CrossRefGoogle Scholar
  14. 14.
    Alonso, M.M., et al.: Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Constr. Build. Mater. 159, 745–754 (2018)CrossRefGoogle Scholar
  15. 15.
    Zheng, L., Wang, W., Qiao, W., Shi, Y., Liu, X.: Immobilization of Cu2+, Zn2+, Pb2+, and Cd2+ during geopolymerization. Front. Environ. Sci. Eng. 9(4), 642–648 (2015)CrossRefGoogle Scholar
  16. 16.
    Conner, J.R., Hoeffner, S.L.: A critical review of stabilization/solidification technology. Crit. Rev. Environ. Sci. Technol. 28(4), 397–462 (1998)CrossRefGoogle Scholar
  17. 17.
    Burakov, A.E., et al.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)CrossRefGoogle Scholar
  18. 18.
    Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H., Yang, S.F.: The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 56, 90–96 (2012)CrossRefGoogle Scholar
  19. 19.
    Rasaki, S.A., Bingxue, Z., Guarecuco, R., Thomas, T., Minghui, Y.: Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. J. Clean. Prod. 213, 42–58 (2019)CrossRefGoogle Scholar
  20. 20.
    Siyal, A.A., et al.: A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manage. 224, 327–339 (2018)CrossRefGoogle Scholar
  21. 21.
    Palomo, A., Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead. Cem. Concr. Res. 33(2), 289–295 (2003)CrossRefGoogle Scholar
  22. 22.
    van Jaarsveld, J.G.S., van Deventer, J.S.J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29(8), 1189–1200 (1999)CrossRefGoogle Scholar
  23. 23.
    Qian, G., Sun, D.D., Tay, J.H.: Immobilization of mercury and zinc in an alkali-activated slag matrix. J. Hazard. Mater. 101(1), 65–77 (2003)CrossRefGoogle Scholar
  24. 24.
    Huang, X., Zhuang, R., Muhammad, F., Yu, L., Shiau, Y., Li, D.: Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere 168, 300–308 (2017)CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Han, F., Mu, J.: Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr. Build. Mater. 160, 818–827 (2018)CrossRefGoogle Scholar
  26. 26.
    Muhammad, F., et al.: Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6 +, Pb2+ and Cd2+ in composite based geopolymer. J. Clean. Prod. 188, 807–815 (2018)CrossRefGoogle Scholar
  27. 27.
    Boca Santa, R.A.A., Soares, C., Riella, H.G.: Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J. Hazard. Mater. 318, 145–153 (2016)CrossRefGoogle Scholar
  28. 28.
    Huang, X., Muhammad, F., Yu, L., Jiao, B., Shiau, Y., Li, D.: Reduction/immobilization of chromite ore processing residue using composite materials based geopolymer coupled with zero-valent iron. Ceram. Int. 44(3), 3454–3463 (2018)CrossRefGoogle Scholar
  29. 29.
    Sun, T., Chen, J., Lei, X., Zhou, C.: Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. J. Environ. Chem. Eng. 2(1), 304–309 (2014)CrossRefGoogle Scholar
  30. 30.
    Guo, B., et al.: Immobilization mechanism of Pb in fly ash-based geopolymer. Constr. Build. Mater. 134, 123–130 (2017)CrossRefGoogle Scholar
  31. 31.
    Shahedan, N., Abdullah, M.M.A.B., Kamarudin, H., Yahya, Z., Razak, R., Jamaludin, L.: Reviews on the different sources materials to the geopolymer performance. Adv. Environ. Biol. 7, 3835–3842 (2013)Google Scholar
  32. 32.
    van Jaarsveld, J.G.S., van Deventer, J.S.J., Lukey, G.C.: The characterisation of source materials in fly ash-based geopolymers. Mater. Lett. 57(7), 1272–1280 (2003)CrossRefGoogle Scholar
  33. 33.
    Xu, H., van Deventer, J.S.J.: Effect of Source Materials on Geopolymerization. Ind. Eng. Chem. Res. 42(8), 1698–1706 (2003)CrossRefGoogle Scholar
  34. 34.
    Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lukey, G.C.: A Comparative Study of Kaolinite Versus Metakaolinite in Fly Ash Based Geopolymers Containing Immobilized Metals. Chem. Eng. Commun. 191(4), 531–549 (2004)CrossRefGoogle Scholar
  35. 35.
    Al-Mashqbeh, A., Abuali, S., El-Eswed, B., Khalili, F.I.: Immobilization of toxic inorganic anions (Cr2O72-, MnO4- and Fe(CN)63-) in metakaolin based geopolymers: a preliminary study. Ceram. Int. 44(5), 5613–5620 (2018)CrossRefGoogle Scholar
  36. 36.
    Zhang, Z.H., Zhu, H.J., Zhou, C.H., Wang, H.: Geopolymer from Kaolin in China: an overview. Appl. Clay Sci. 119, 31–41 (2016)CrossRefGoogle Scholar
  37. 37.
    El-Eswed, B.I., Yousef, R.I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S.I., Khalili, F.: Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 137, 34–42 (2015)CrossRefGoogle Scholar
  38. 38.
    Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., Vale, J.: Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 88(7), 1185–1193 (2009)CrossRefGoogle Scholar
  39. 39.
    Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6), 665–671 (2010)CrossRefGoogle Scholar
  40. 40.
    Aly, Z., et al.: Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J. Nucl. Mater. 378(2), 172–179 (2008)CrossRefGoogle Scholar
  41. 41.
    Lee, S., van Riessen, A., Chon, C.-M., Kang, N.-H., Jou, H.-T., Kim, Y.-J.: Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J. Hazard. Mater. 305, 59–66 (2016)CrossRefGoogle Scholar
  42. 42.
    Aredes, F.G.M., Campos, T.M.B., Machado, J.P.B., Sakane, K.K., Thim, G.P., Brunelli, D.D.: Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 41(6), 7302–7311 (2015)CrossRefGoogle Scholar
  43. 43.
    Nikolić, V., Komljenović, M., Džunuzović, N., Ivanović, T., Miladinović, Z.: Immobilization of hexavalent chromium by fly ash-based geopolymers. Compos. Part B Eng. 112, 213–223 (2017)CrossRefGoogle Scholar
  44. 44.
    Nikolić, V., Komljenović, M., Džunuzović, N., Miladinović, Z.: The influence of Pb addition on the properties of fly ash-based geopolymers. J. Hazard. Mater. 350, 98–107 (2018)CrossRefGoogle Scholar
  45. 45.
    Donatello, S., Fernández-Jiménez, A., Palomo, A.: An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. J. Hazard. Mater. 213–214, 207–215 (2012)CrossRefGoogle Scholar
  46. 46.
    Rattanasak, U., Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078 (2009)CrossRefGoogle Scholar
  47. 47.
    van Jaarsveld, J.G.S., van Deventer, J.S.J.: Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 38(10), 3932–3941 (1999)CrossRefGoogle Scholar
  48. 48.
    Luna Galiano, Y., Fernández Pereira, C., Vale, J.: Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 185(1), 373–381 (2011)CrossRefGoogle Scholar
  49. 49.
    Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)CrossRefGoogle Scholar
  50. 50.
    Komnitsas, K., Zaharaki, D., Bartzas, G.: Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 73, 103–109 (2013)CrossRefGoogle Scholar
  51. 51.
    CN-HJ, Solid Waste-Extraction Procedure for Leaching Toxicity-sulphuric Acid and Nitric Acid 18 Method (HJ/T 299-2007) (2007)Google Scholar
  52. 52.
    US EPA: Test methods for evaluating solid wastes, toxicity characteristic leaching procedure (TCLP), Method 1311 SW-846, 3rd ed. Environmental Protection Agency, Washington, DC, USA (1986)Google Scholar
  53. 53.
    Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges, BSI British StandardsGoogle Scholar
  54. 54.
    Bakharev, T.: Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35(4), 658–670 (2005)CrossRefGoogle Scholar
  55. 55.
    Luo, H., Cheng, Y., He, D., Yang, E.-H.: Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 668, 90–103 (2019)CrossRefGoogle Scholar
  56. 56.
    Jing, C., Meng, X., Korfiatis, G.P.: Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests. J. Hazard. Mater. 114(1), 101–110 (2004)CrossRefGoogle Scholar
  57. 57.
    Du, Y.-J., Wei, M.-L., Reddy, K.R., Liu, Z.-P., Jin, F.: Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J. Hazard. Mater. 271, 131–140 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • El Fellah Imad
    • 1
    Email author
  • Ammari Mohammed
    • 1
  • Ben Allal Laïla
    • 1
  1. 1.Research Team: Materials, Environment and Sustainable Development (MEDD)Faculty of Sciences and Techniques of TangierTangierMorocco

Personalised recommendations