Structural Modification of Cubic Zinc Bismuth Spinel Induced by Lead Substitution

  • Mohammed Eddya
  • Bouazza Tbib
  • Khalil El-HamiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)


The actual work is focused on synthesis of zinc nanomaterials spinel, and the study of structural morphological properties. During this work we synthesized zinc bismuth spinel nanoparticles from Zinc oxide (ZnO), lead oxide (PbO) and Bismuth trioxide (Bi2O3) by solid state method. We noticed that the zinc doping spinel by lead (Pb) affect the morphology in nano-stalks thing which influence its structural and optical properties. We also demonstrated that the lead (Pb) can doped zinc bismuth spinel by low concentration which is an element that offers a protection and reduce the parameters variation during the nanoparticles’ elaboration.


Nanoparticles Spinel Solid state Lead Zinc 


  1. 1.
    Harris, D.C.: Materials for Infrared Windows and Domes. SPIE Press, Bellingham (1999)Google Scholar
  2. 2.
    Matysiak, M.: Pratiques et Organisation des Soins. 40(2), pp. 133–144 (2009)Google Scholar
  3. 3.
    Wickersheim, K.A., LaFever, R.A.: Optical properties of synthetic spinel. J. Opt. Soc. Am. 50(8), 831–832 (1960)CrossRefGoogle Scholar
  4. 4.
    Thomas, M.E., Tropf, W.J.: Aluminum oxide (Al2O3) revisited. In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids III, pp. 653–682. Academic Press, San Diego (1998)Google Scholar
  5. 5.
    Ricks, D.W.: Polarization analysis of sapphire domes. Proc. SPIE 891, 172–178 (1988)CrossRefGoogle Scholar
  6. 6.
    Valenzuela, R., Ceramics, M.: Instituto de Investigaciones en Materiales. National University of Mexico (1993)Google Scholar
  7. 7.
    Mo, S.D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., Riedel, R.: Interesting physical properties of the new spinel phase of Si 3 N 4 and C 3 N 4. Phys. Rev. Lett. 83(24), 5046 (1999)CrossRefGoogle Scholar
  8. 8.
    Van der Ven, A., Ceder, G.: Electrochemical properties of spinel Li x CoO 2: a first-principles investigation. Phys. Rev.B 59(2), 742 (1999)CrossRefGoogle Scholar
  9. 9.
    Soignar, E., Soayazula, M., Mao, H.K., Dong, J., Sankey, O.F., McMillan, D.F.: High pressure–high temperature investigation of the stability of nitride spinels in the systems Si3N4–Ge3N4. J. Solid State Commun. 120, 237–242 (2001)CrossRefGoogle Scholar
  10. 10.
    Dong, J., Deslippe, J., Sankey, O.F., Soignard, E., McMillan, P.: Phys. Rev. B. 67, 094104 (2004)CrossRefGoogle Scholar
  11. 11.
    Warren, M.C., Dove, M.T., Redfern, S.A.T.: Disordering of MgAl 2 O 4 spinel from first principles. Mineral. Mag. 64, 311–317 (2000)CrossRefGoogle Scholar
  12. 12.
    Wakaki, M.K., Wakamura, T.: Arai-Ternary and Multinary compounds in the 21st Century- IPAP Books 1 (2001)Google Scholar
  13. 13.
    Turkin, A.I., Drebushchak, V.A.: Synthesis and calorimetric investigation of stoichiometric Fe-spinels: MgFe2O4. J. Crys. Grow. 265, 165–167 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Downs, R.T., Pischedda, V., Shetty, R., Saxena, S.K., Zha, C.S., Zhao, Y.S., Schifer, D., Waskowska, A.: High-pressure x-ray diffraction and Raman spectroscopic studies of the tetragonal spinel CoFe 2 O 4. Phys. Rev. B 68, 094101 (2003)CrossRefGoogle Scholar
  15. 15.
    Barahona, P., Pena, O.: Magnetic order in sulfide spinels MnLu1. 8Me0. 2S4 (Me = Ho, Er, Cr). Physic. B 384, 74–77 (2006)CrossRefGoogle Scholar
  16. 16.
    Torres, C., Arias, A.G., Hernandez-Gomez, P., de Francisco, C., Alejos, O., Munoz, J.M., Zazo, M.: An approach to the magnetic relaxation processes in lithium ferrites. J. Mag. Magn. Mater. 316(2), e809–e812 (2007)CrossRefGoogle Scholar
  17. 17.
    Gillot, B., Nivoix, V., Res, M.: New cation-deficient vanadium–iron spinels with a high vacancy content. Mater. Res. Bull. 34, 1735–1747 (1999)CrossRefGoogle Scholar
  18. 18.
    Gasparov, L.V., Tanner, D.B., Romero, D.B., Berger, H., Margaritondo, G., Forro, L.: Phys. Rev. B. 62, 7940–7943 (2000)CrossRefGoogle Scholar
  19. 19.
    Selvan, R.K., Augustin, C.O., Sanjeeviraja, C., Prabhakaran, D.: Effect of SnO2 coating on the magnetic properties of nanocrystalline CuFe2O4. Solid State Commun. 137, 512–516 (2006)CrossRefGoogle Scholar
  20. 20.
    Garg, G., Gupta, S., Ramanujachary, K.V., Lofland, S.E., Ganguli, A.K.: Investigation of cation-deficient quaternary thiospinels: single crystal study of Ag1. 4Cr1. 47Sn2. J. Alloys Comp. 390, 46–50 (2005)CrossRefGoogle Scholar
  21. 21.
    Garg, G., Bobev, S., Ganguli, A.K.: Solid State Ion 146(40), 195–198 (2002)Google Scholar
  22. 22.
    Presti, L.L., Invernizzi, D., Soave, R., Destro, R.: Looking for structural phase transitions in the colossal magnetoresistive thiospinel FeCr2S4 by a multi-temperature single-crystal X-ray diffraction study. Chem. Phys. Lett. 416, 28–32 (2005)CrossRefGoogle Scholar
  23. 23.
    Yang, Z., Tan, S., Zhang, Y.: Magnetic properties in spinel Fe1 + xCr2− xS4 with CMR effect. Solid State Commun. 115, 679–682 (2000)CrossRefGoogle Scholar
  24. 24.
    Sagredo, V., Moron, M.C., Betancourt, L., Delgado, G.E.: Antiferromagnetic versus spin-glass like behavior in MnIn2S4. J. Mag. Magn. Mater. 312, 294–297 (2007)CrossRefGoogle Scholar
  25. 25.
    Cahn, R.W., Haasen, P., Kramer, E.J.: Materials Science and Technology-vol. 3B, Ed. VCH (1994)Google Scholar
  26. 26.
    Louër, D., Boultif, A.: Indexing with the successive dichotomy method, DICVOL04. Zeitschrift für Kristallographie Suppl. 23, 225–230 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Polydisciplinary Faculty of Khouribga, Laboratory of Nanosciences and ModelingUniversity of Sultan Moulay SlimaneKhouribgaMorocco

Personalised recommendations