Advertisement

Iterative Decomposition for Simulating the Instability of Nano-Switches

  • Hajar BaghdadiEmail author
  • Karim Rhofir
  • Mohamed Lamhamdi
Conference paper
  • 28 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)

Abstract

In this paper, the iterative decomposition method is applied to solve the system of nonlinear differential equation arising from Nano Electromechanical Switches (NEMS) modeling. Two types of nano-beam actuators contain cantilever and double cantilever are considered and the effects of Casimir and Vander Waals forces on the deflection of micro- and nano-beam actuators are investigated numerically. The pull-in instability parameters of the switch have been considered and compared with those of numerical solution. It is found that using conventional decomposition method in solving NEMS problems can lead to physically incorrect results. The numerical results for different cases of beam are presented and compared in order to demonstrate the accuracy and capability of the proposed method.

Keywords

Nonlinear differential equation Natural decomposition Nano Electromechanical Switch (NEMS) Instability 

Notes

Acknowledgments

The authors wish to acknowledge all the members of the scientific committee.

References

  1. 1.
    Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1988).  https://doi.org/10.1016/0022-247X(88)90170-9MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994).  https://doi.org/10.1007/978-94-015-8289-6CrossRefzbMATHGoogle Scholar
  3. 3.
    He, J.H.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 230–235 (1997).  https://doi.org/10.1016/S1007-5704(97)90007-1CrossRefGoogle Scholar
  4. 4.
    He, J.H.: Variational iteration method_a kind of nonlinear analytical technique: some examples. Int. J. Non. Linear Mech. 34, 699–708 (1999).  https://doi.org/10.1016/s0020-7462(98)00048-1CrossRefGoogle Scholar
  5. 5.
    He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non. Linear Mech. 35, 37–43 (2000).  https://doi.org/10.1016/S0020-7462(98)00085-7MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    He, J.H.: New interpretation of homotopy-perturbation method. Int. J. Mod. Phys. B 20(18), 2561–2568 (2006).  https://doi.org/10.1142/S0217979206034819CrossRefGoogle Scholar
  7. 7.
    He, J.H.: Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, part II: a new transformation. Int. J. Nonlinear Mech. 37, 315–320 (2002).  https://doi.org/10.1016/S0020-7462(00)00117-7CrossRefzbMATHGoogle Scholar
  8. 8.
    He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals 30(3), 700–708 (2006).  https://doi.org/10.1016/j.chaos.2006.03.020MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos, Solitons Fractals 34, 1421–1429 (2007).  https://doi.org/10.1016/j.chaos.2006.05.072MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006).  https://doi.org/10.1142/S0217979206033796MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    He, J.H.: Non-perturbative methods for strongly nonlinear problems. Dissertation. de-Verlag. Int. GmbH., Berlin (2006)Google Scholar
  12. 12.
    Adomian, G.: Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 91, 39–46 (1983).  https://doi.org/10.1016/0022-247X(83)90090-2MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Adomian, G.: Stochastic Systems. Academic Press, London (1983)zbMATHGoogle Scholar
  14. 14.
    Venkatarangn, S.N., Rajalakshmi, K.: A modification of Adomian’s solution for nonlinear oscillatory systems. Comput. Math Appl. 29(6), 67–73 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shawagfeh, N.T.: Analytic approximate solution for a nonlinear oscillator equation. Comput. Math Appl. 31(6), 135–141 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Adomian, G.: Solution of coupled nonlinear partial differential equations by decomposition. Comput. Math Appl. 31(6), 117–120 (1996).  https://doi.org/10.1016/0898-1221(96)00010-7MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lesnic, D., Elliott, L.: The decomposition approach to inverse heat conduction. J. Math. Anal. Appl. 232, 82–98 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chiu, C.H., Chen, C.K.: A decomposition method for solving the convective longitudinal fins with variable thermal conductivity. Int. J. Heat Mass Transfer. 45, 2067–2075 (2002).  https://doi.org/10.1016/S0017-9310(01)00286-1CrossRefzbMATHGoogle Scholar
  19. 19.
    Rach, H.: A convenient computational form for the Adomian polynomials. J. Math. Anal. Appl. 102, 415–419 (1984)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gabet, L.: The theoretical foundation of the Adomian method. Comput. Math Appl. 27(12), 41–52 (1994).  https://doi.org/10.1016/0898-1221(94)90084-1MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Abbaoui, K., Cherruault, Y., Seng, V.: Practical formulae for the calculus of multivariable Adomian polynomials. Math. Comput. Model. 22(1), 89–93 (1995).  https://doi.org/10.1016/0895-7177(95)00103-9MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Adomian, G., Rach, R.: Modified Adomian polynomials. Mathl. Comput. Model. 24(11), 39–46 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wazwaz, A.M.: A comparison between Adomian decomposition method and Taylor series method in the series solution. Appl. Math. Comput. 97, 37–44 (1998).  https://doi.org/10.1016/S0096-3003(97)10127-8MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kuang, J.H., Chen, C.J.: Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuators. Math. Comput. Model. 41, 1479–1491 (2005).  https://doi.org/10.1016/j.mcm.2005.06.001MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wazwaz, A.M.: A reliable modification of Adomian decomposition method. Appl. Math. Comput. 102, 77–86 (1999)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wazwaz, A.M.: Approximate solutions to boundary value problems of higher order by the modified decomposition method. Comput. Math Appl. 40(6/7), 679–691 (2000).  https://doi.org/10.1016/S0898-1221(00)00187-5MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wazwaz, A.M.: The numerical solution of sixth-order boundary value problems by the modified decomposition method. J. Comput. Appl. Math. 118, 311–325 (2001).  https://doi.org/10.1016/S0096-3003(99)00224-6MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. J. Sens. Actuators A Phys. 89, 187–218 (2015).  https://doi.org/10.1016/j.sna.2014.04.025CrossRefGoogle Scholar
  29. 29.
    Ramezani, A., Alasty, A., Akbari, J.: Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations. Nanotechnology 19 (2008).  https://doi.org/10.1088/0957-4484/19/01/015501

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hajar Baghdadi
    • 1
    • 2
    Email author
  • Karim Rhofir
    • 1
  • Mohamed Lamhamdi
    • 2
  1. 1.ENSAKhouribgaMorocco
  2. 2.FSTSettatMorocco

Personalised recommendations