CO2 Carbonation on Alkaline Materials

  • Abdeslam Ababou
  • Achaimae KharchafiEmail author
  • Mustapha Taleb
  • Abdelhak Kherbeche
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1104)


Carbon dioxide CO2 plays an important role in global warming because of the greenhouse effect.

Different technologies have been studied for its capture and storage; an alternative pathway called “Mineral CO2 sequestration” is a process in which carbon dioxide CO2 reacts with materials having a high metal oxide composition to produce a chemically stable and insoluble metal carbonate. This work has the results of the reaction of mineral carbonation of natural JT material (CaSiO3). This last is synthesized starting from the calcination with 900 °C of the rough clay which is obtained from a tertiary formation located in Eastern Morocco. The carbonate of calcium (CaCO3) is formed after the submission of the sample to a flow of pure CO2 during 15 min under the normal conditions of the temperature and the pressure. It was assessed by diffraction of x-rays (DRX), electronic scan microscopy (MEB).

These techniques of analyzes physics-chemical validate the CO2 collection efficiency by our material.


Carbon dioxide Greenhouse effect Mineral carbonation Calcium carbonates 


  1. 1.
    IPCC: Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of working group, to the fourth assessment report (2007)Google Scholar
  2. 2.
    Ababou, A., Ajbary, M., Taleb, M., Kherbeche, A.: Direct mineral carbonation of new materials for CO2 sequestration. J. Mater. Environ. Sci. 8(9), 3106–3111 (2017)Google Scholar
  3. 3.
    Goff, F., Lackner, K.S.: Carbon dioxide sequestering using ultramafic rocks. Environ. Geosci. 5(3), 89–101 (1998)CrossRefGoogle Scholar
  4. 4.
    Kerrick, D.M., Mckibben, M.A., Seward, T.M., Caldiera, K.: Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293 (1995)CrossRefGoogle Scholar
  5. 5.
    Brady, P.V., Gislason, S.R.: Seafloor weathering controls on atmospheric CO2 and global climate. Geochimica et Cosmochimica Acta 61(5), 965–973 (1997)CrossRefGoogle Scholar
  6. 6.
    Bryant, D.R., Zador, I., Landwehr, J.B., Wolfe, H.M.: Limited clinical utility of midtrimester fetal morphometric percentile rankings in screening for birth weight abnormalities. Am. J. Obstet. Gynecol. 177(4), 859–863 (1997)CrossRefGoogle Scholar
  7. 7.
    Jepma, C.J., Munasinghe, M.: Climate Change Policy: Facts, Issues and Analyses. Cambridge University Press, Cambridge (1998)Google Scholar
  8. 8.
    White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S., Pennline, H.W.: Separation and capture of CO2 from large stationary sources and sequestration in geological formations - coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 53, 645–715 (2003)CrossRefGoogle Scholar
  9. 9.
    Santos, A., Ajbary, M., Toledo-Fernández, J.A., Morales-Flόrez, V., Kherbeche, A., Esquivias, L.: J. Sol. Gel. Sci. Technol. 48, 224 (2008)CrossRefGoogle Scholar
  10. 10.
    Herzog, H.: Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 (2002)Google Scholar
  11. 11.
    Santos, A., Ajbary, M., Kherbeche, A., Piñero, M., De la Rosa-Fox, N., Esquivias, L.: J. Sol-Gel Sci. Technol. (2008)Google Scholar
  12. 12.
    Bonenfant, D., Kharoune, L., Sauve, S., Hausler, R., Niquette, P., Mimeault, M., Kharoune, M.: Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. Int. J. Greenhouse Gas Control 3, 20–28 (2008)CrossRefGoogle Scholar
  13. 13.
    Baciocchi, R., Costa, G., Polettini, A., Pomi, R.: Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Proc. 1(1), 4859–4866 (2009)CrossRefGoogle Scholar
  14. 14.
    Huijgen, W.J.J., Witkamp, G.-J., Comans, R.N.J.: CO2 mineral sequestration by steel slag carbonation. Environ. Sci. Technol. 39(24), 9676 (2005)CrossRefGoogle Scholar
  15. 15.
    Huijgen, W.J.J., Comans, R.N.J.: Carbonation of steel slag for CO2 séquestration: leaching of products and réacfion mechanisms. Environ. Sci. Technol. 40(8), 2790 (2006)CrossRefGoogle Scholar
  16. 16.
    Montes-Hemandez, G., Pérez-Lôpez, F., Renard, R., Nieto, J.M., Chariet, L.: Minerai séquestration of CO2 by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater. 161(2–3), 1347–1354 (2009). 30CrossRefGoogle Scholar
  17. 17.
    Ababou, A., Ajbary, M., Taleb, M., Kherbeche, A.: CO2 sequestration on new materials. J. Mater. Environ. Sci. 6(9), 2367 (2015)Google Scholar
  18. 18.
    Jimoh, O.A., Otitoju, T.A., Hussin, H.: Understanding the precipitated calcium carbonate (PCC) production mechanism and its characteristics in the liquid-gas system using milk of line (MOL) suspension. South Afr. J. Chem. 70, 1–7 (2017)Google Scholar
  19. 19.
    Vaculikova, L., Plevova, E.: Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn. Geomater. 2(2(138)), 167–175 (2005)Google Scholar
  20. 20.
    Feng, J., Guo, H., Wang, S., Zhao, Y., Ma, X.: Fabrication of multi-shelled hollow Mg- modified CaCO3 microspheres and their improved CO2 adsorption performance Chem. Eng. J. 321, 401–411 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdeslam Ababou
    • 1
  • Achaimae Kharchafi
    • 1
    Email author
  • Mustapha Taleb
    • 2
  • Abdelhak Kherbeche
    • 1
  1. 1.Laboratory of Catalysis, Materials and EnvironmentFezMorocco
  2. 2.Laboratory of Engineering of Modelling and Environmental MaterialsFezMorocco

Personalised recommendations