CCL22 Signaling in the Tumor Environment

  • Natascha Röhrle
  • Max M. L. Knott
  • David AnzEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1231)


T cell-mediated elimination of malignant cells is one cornerstone of endogenous and therapeutically induced antitumor immunity. Tumors exploit numerous regulatory mechanisms to suppress T cell immunity. Regulatory T cells (T regs) play a crucial role in this process due to their ability to inhibit antitumoral immune responses and they are known to accumulate in various cancer entities. The chemokine CCL22, predominately produced by dendritic cells (DCs), regulates T reg migration via binding to its receptor CCR4. CCL22 controls T cell immunity, both by recruiting T regs to the tumor tissue and by promoting the formation of DC-T reg contacts in the lymph node. Here, we review the current knowledge on the role of CCL22 in cancer immunity. After revising the principal mechanisms of CCL22-induced immune suppression, we address the factors leading to CCL22 expression and ways of targeting this chemokine therapeutically. Therapeutic interventions to the CCL22-CCR4 axis may represent a promising strategy in cancer immunotherapy.


CCL22 CCR4 Regulatory T cells Dendritic cells Chemokines T cell immunity Immune checkpoint Immunosuppression Tumor environment Lymph node Antitumor immunity Immune escape Immunotherapy IL-1 α Prostaglandin E2 


  1. 1.
    Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6(4):295–307PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yuan Q et al (2007) CCR4-dependent regulatory T cell function in inflammatory bowel disease. J Exp Med 204(6):1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Godiska R et al (1997) Human macrophage-derived chemokine (MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cells. J Exp Med 185(9):1595–1604PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schaniel C et al (1998) Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells. J Exp Med 188(3):451–463PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
  12. 12.
    Kanazawa N et al (1999) Fractalkine and macrophage-derived chemokine: T cell-attracting chemokines expressed in T cell area dendritic cells. Eur J Immunol 29(6):1925–1932PubMedCrossRefGoogle Scholar
  13. 13.
    Anz D et al (2015) Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 75(21):4483–4493PubMedCrossRefGoogle Scholar
  14. 14.
    Tang HL, Cyster JG (1999) Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284(5415):819–822PubMedCrossRefGoogle Scholar
  15. 15.
    Sallusto F et al (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29(5):1617–1625PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mantovani A et al (2000) Macrophage-derived chemokine (MDC). J Leukoc Biol 68(3):400–404PubMedGoogle Scholar
  17. 17.
    Vulcano M et al (2001) Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. Eur J Immunol 31(3):812–822PubMedCrossRefGoogle Scholar
  18. 18.
    Iellem A et al (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194(6):847–853PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Romagnani S (2002) Cytokines and chemoattractants in allergic inflammation. Mol Immunol 38(12-13):881–885PubMedCrossRefGoogle Scholar
  20. 20.
    Rapp M et al (2019) CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 216(5):1170–1181PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vitali C et al (2012) Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 120(6):1237–1245PubMedCrossRefGoogle Scholar
  22. 22.
    Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10PubMedCrossRefGoogle Scholar
  23. 23.
    Darvin P et al (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):165PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347PubMedCrossRefGoogle Scholar
  26. 26.
    Nishimura H et al (1996) Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol 8(5):773–780PubMedCrossRefGoogle Scholar
  27. 27.
    Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14(4):847–856PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefGoogle Scholar
  29. 29.
    Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800CrossRefGoogle Scholar
  30. 30.
    Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899):271–275PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118CrossRefGoogle Scholar
  32. 32.
    Grohmann U et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Liu Y et al (2018) Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation. Cancer Cell 33(3):480–494.e7PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Peggs KS et al (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717–1725PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tanaka H et al (2002) Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25(3):207–217PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127(4):759–767PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rubtsov YP et al (2010) Stability of the regulatory T cell lineage in vivo. Science 329(5999):1667–1671PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fantini MC et al (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172(9):5149–5153PubMedCrossRefGoogle Scholar
  41. 41.
    Ghiringhelli F et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202(7):919–929PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang H, Franco F, Ho PC (2017) Metabolic regulation of Tregs in cancer: opportunities for immunotherapy. Trends Cancer 3(8):583–592PubMedCrossRefGoogle Scholar
  43. 43.
    Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194(5):629–644PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Deaglio S et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bopp T et al (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204(6):1303–1310PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Takahashi T et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cao X et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646PubMedCrossRefGoogle Scholar
  49. 49.
    Bauer CA et al (2014) Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J Clin Invest 124(6):2425–2440PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de la Rosa M et al (2004) Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 34(9):2480–2488PubMedCrossRefGoogle Scholar
  51. 51.
    Gobert M et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69(5):2000–2009PubMedCrossRefGoogle Scholar
  52. 52.
    Marshall NA et al (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103(5):1755–1762PubMedCrossRefGoogle Scholar
  53. 53.
    Wolf AM et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9(2):606–612PubMedGoogle Scholar
  54. 54.
    Somasundaram R et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62(18):5267–5272PubMedGoogle Scholar
  55. 55.
    Liyanage UK et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761PubMedCrossRefGoogle Scholar
  56. 56.
    Kobayashi N et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13(3):902–911PubMedCrossRefGoogle Scholar
  57. 57.
    Bates GJ et al (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380PubMedCrossRefGoogle Scholar
  58. 58.
    Sasada T et al (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98(5):1089–1099PubMedCrossRefGoogle Scholar
  59. 59.
    Sato E et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102(51):18538–18543PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Valzasina B et al (2006) Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent. Cancer Res 66(8):4488–4495PubMedCrossRefGoogle Scholar
  61. 61.
    Plitas G et al (2016) Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45(5):1122–1134PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Halvorsen EC et al (2019) IL-33 increases ST2(+) Tregs and promotes metastatic tumour growth in the lungs in an amphiregulin-dependent manner. Oncoimmunology 8(2):e1527497PubMedCrossRefGoogle Scholar
  63. 63.
    Green JA et al (2017) A nonimmune function of T cells in promoting lung tumor progression. J Exp Med 214(12):3565–3575PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Li YQ et al (2013) Tumor secretion of CCL22 activates intratumoral Treg infiltration and is independent prognostic predictor of breast cancer. PLoS One 8(10):e76379PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Miller AM et al (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405PubMedCrossRefGoogle Scholar
  66. 66.
    Mizukami Y et al (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122(10):2286–2293PubMedCrossRefGoogle Scholar
  67. 67.
    Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230PubMedCrossRefGoogle Scholar
  68. 68.
    Mailloux AW, Young MR (2009) NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol 182(5):2753–2765PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wu S et al (2018) C-C motif chemokine 22 predicts postoperative prognosis and adjuvant chemotherapeutic benefits in patients with stage II/III gastric cancer. Oncoimmunology 7(6):e1433517PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ghia P et al (2001) Chemoattractants MDC and TARC are secreted by malignant B-cell precursors following CD40 ligation and support the migration of leukemia-specific T cells. Blood 98(3):533–540PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ishida T et al (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66(11):5716–5722PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mailloux AW, Clark AM, Young MR (2010) NK depletion results in increased CCL22 secretion and Treg levels in Lewis lung carcinoma via the accumulation of CCL22-secreting CD11b+CD11c+ cells. Int J Cancer 127(11):2598–2611PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wagsater D et al (2008) Quantification of the chemokines CCL17 and CCL22 in human colorectal adenocarcinomas. Mol Med Rep 1(2):211–217PubMedPubMedCentralGoogle Scholar
  74. 74.
    Gao Q et al (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yang P et al (2012) TGF-beta-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22(3):291–303PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Faget J et al (2011) Early detection of tumor cells by innate immune cells leads to T(reg) recruitment through CCL22 production by tumor cells. Cancer Res 71(19):6143–6152PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tsujikawa T et al (2013) Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer 132(12):2755–2766PubMedCrossRefGoogle Scholar
  78. 78.
    Wiedemann GM et al (2016) Cancer cell-derived IL-1alpha induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5(9):e1175794PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Iellem A et al (2000) Inhibition by IL-12 and IFN-alpha of I-309 and macrophage-derived chemokine production upon TCR triggering of human Th1 cells. Eur J Immunol 30(4):1030–1039PubMedCrossRefGoogle Scholar
  80. 80.
    Ling J et al (2012) KrasG12D-induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21(1):105–120PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Watari K et al (2014) Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One 9(6):e99568PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mantovani A, Barajon I, Garlanda C (2018) IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 281(1):57–61PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Dinarello CA (2010) Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev 29(2):317–329PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hickish T et al (2017) MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 18(2):192–201CrossRefGoogle Scholar
  85. 85.
    Hong DS et al (2014) MABp1, a first-in-class true human antibody targeting interleukin-1alpha in refractory cancers: an open-label, phase 1 dose-escalation and expansion study. Lancet Oncol 15(6):656–666PubMedCrossRefGoogle Scholar
  86. 86.
    Muthuswamy R et al (2008) Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 68(14):5972–5978PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang MT, Honn KV, Nie D (2007) Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 26(3-4):525–534PubMedCrossRefGoogle Scholar
  88. 88.
    Phipps RP, Stein SH, Roper RL (1991) A new view of prostaglandin E regulation of the immune response. Immunol Today 12(10):349–352PubMedCrossRefGoogle Scholar
  89. 89.
    Weller CL et al (2007) Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc Natl Acad Sci U S A 104(28):11712–11717PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Wang XS, Lau HY (2006) Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61(4):503–506PubMedCrossRefGoogle Scholar
  91. 91.
    Nakayama T et al (2006) Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol 79(1):95–104PubMedCrossRefGoogle Scholar
  92. 92.
    Yu Y, Chadee K (1998) Prostaglandin E2 stimulates IL-8 gene expression in human colonic epithelial cells by a posttranscriptional mechanism. J Immunol 161(7):3746–3752PubMedGoogle Scholar
  93. 93.
    Harris SG et al (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150PubMedCrossRefGoogle Scholar
  94. 94.
    Nakanishi M, Rosenberg DW (2013) Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol 35(2):123–137PubMedCrossRefGoogle Scholar
  95. 95.
    Sharma S et al (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65(12):5211–5220PubMedCrossRefGoogle Scholar
  96. 96.
    Liu VC et al (2007) Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178(5):2883–2892PubMedCrossRefGoogle Scholar
  97. 97.
    Rothwell PM et al (2012) Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379(9826):1602–1612PubMedCrossRefGoogle Scholar
  98. 98.
    Muthuswamy R et al (2012) NF-kappaB hyperactivation in tumor tissues allows tumor-selective reprogramming of the chemokine microenvironment to enhance the recruitment of cytolytic T effector cells. Cancer Res 72(15):3735–3743PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Jafarzadeh A et al (2015) Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism. Tumour Biol 36(2):1163–1171PubMedCrossRefGoogle Scholar
  100. 100.
    Fu C, Jiang A (2018) Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol 9:3059PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bromley SK, Mempel TR, Luster AD (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9(9):970–980PubMedCrossRefGoogle Scholar
  102. 102.
    Forster R et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99(1):23–33PubMedCrossRefGoogle Scholar
  103. 103.
    Castellino F, Germain RN (2007) Chemokine-guided CD4+ T cell help enhances generation of IL-6RalphahighIL-7Ralpha high prememory CD8+ T cells. J Immunol 178(2):778–787PubMedCrossRefGoogle Scholar
  104. 104.
    Smith CM et al (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5(11):1143–1148PubMedCrossRefGoogle Scholar
  105. 105.
    Semmling V et al (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11(4):313–320PubMedCrossRefGoogle Scholar
  106. 106.
    Tadokoro CE et al (2006) Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203(3):505–511PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Joshi NS et al (2015) Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43(3):579–590PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Matheu MP et al (2015) Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat Commun 6:6219PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tang Q et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7(1):83–92PubMedCrossRefGoogle Scholar
  110. 110.
    Janikashvili N et al (2011) The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011:430394PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Onizuka S et al (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59(13):3128–3133PubMedPubMedCentralGoogle Scholar
  112. 112.
    Jones E et al (2002) Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2:1PubMedPubMedCentralGoogle Scholar
  113. 113.
    Golgher D et al (2002) Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32(11):3267–3275PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Dannull J et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Attia P et al (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28(6):582–592PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Litzinger MT et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Antony PA et al (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174(5):2591–2601PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20(2):241–246PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gerena-Lewis M et al (2009) A Phase II trial of Denileukin Diftitox in patients with previously treated advanced non-small cell lung cancer. Am J Clin Oncol 32(3):269–273PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Smigiel KS et al (2014) Regulatory T-cell homeostasis: steady-state maintenance and modulation during inflammation. Immunol Rev 259(1):40–59PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Schadendorf D et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ribas A et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16(8):908–918PubMedCrossRefGoogle Scholar
  124. 124.
    Simpson TR et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210(9):1695–1710PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kapadia D, Fong L (2005) CTLA-4 blockade: autoimmunity as treatment. J Clin Oncol 23(35):8926–8928PubMedCrossRefGoogle Scholar
  126. 126. Approval for additional indication for chemotherapy-native CCR4-positive ATL of Mogamulizumab. 2019 [cited 14 Jun 2019].
  127. 127.
    Kim YH et al (2018) Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol 19(9):1192–1204PubMedCrossRefGoogle Scholar
  128. 128.
    Administration, U.S.F.a.D. FDA approves treatment for two rare types of non-Hodgkin lymphoma. 2019 [cited 19 May 2019].
  129. 129.
    Sugiyama D et al (2013) Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A 110(44):17945–17950PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ishida T, Ueda R (2006) CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 97(11):1139–1146PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Fuji S et al (2016) Pretransplantation Anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J Clin Oncol 34(28):3426–3433PubMedCrossRefGoogle Scholar
  132. 132.
    Dai J et al (2018) Potential Association of anti-CCR4 antibody mogamulizumab and graft-vs-host disease in patients with mycosis fungoides and sezary syndrome. JAMA Dermatol 154(6):728–730PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ifuku H et al (2015) Fatal reactivation of hepatitis B virus infection in a patient with adult T-cell leukemia-lymphoma receiving the anti-CC chemokine receptor 4 antibody mogamulizumab. Hepatol Res 45(13):1363–1367PubMedCrossRefGoogle Scholar
  134. 134.
    Ketcham JM, Marshall LA, Talay O (2018) CCR4 Antagonists inhibit treg trafficking into the tumor microenvironment. ACS Med Chem Lett 9(10):953–955PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kindon N et al (2017) Discovery of AZD-2098 and AZD-1678, two potent and bioavailable CCR4 receptor antagonists. ACS Med Chem Lett 8(9):981–986PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Pere H et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118(18):4853–4862PubMedCrossRefGoogle Scholar
  137. 137.
    Talay O (2017) Potent and selective C-C chemokine receptor (CCR4) antagonists potentiate anti-tumor immune responses by inhibiting regulatory T cells (Treg). American Association for Cancer Research, Washington, DCGoogle Scholar
  138. 138.
    Jackson JJ et al (2019) Discovery of a potent and selective CCR4 antagonist that inhibits treg trafficking into the tumor microenvironment. J Med Chem 62(13):6190–6213PubMedCrossRefGoogle Scholar
  139. 139.
    Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Dinarello CA (2014) An expanding role for interleukin-1 blockade from gout to cancer. Mol Med 20(Suppl 1):S43–S58PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Elaraj DM et al (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 12(4):1088–1096PubMedCrossRefGoogle Scholar
  143. 143.
    Lewis AM et al (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med 4:48PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Arend WP (1993) Interleukin-1 receptor antagonist. Adv Immunol 54:167–227PubMedCrossRefGoogle Scholar
  145. 145.
    Dinarello CA (2018) An Interleukin-1 signature in breast cancer treated with Interleukin-1 receptor blockade: implications for treating cytokine release syndrome of checkpoint inhibitors. Cancer Res 78(18):5200–5202PubMedCrossRefGoogle Scholar
  146. 146.
    Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44PubMedCrossRefGoogle Scholar
  147. 147.
    Galluzzi L et al (2012) Trial watch: experimental toll-like receptor agonists for cancer therapy. Oncoimmunology 1(5):699–716PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Krieg AM (2008) Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27(2):161–167PubMedCrossRefGoogle Scholar
  149. 149.
    Schon MP, Schon M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27(2):190–199PubMedCrossRefGoogle Scholar
  150. 150.
    Chang YC et al (2005) Current and potential uses of imiquimod. South Med J 98(9):914–920PubMedCrossRefGoogle Scholar
  151. 151.
    Clark RA et al (2008) Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205(10):2221–2234PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Perret R et al (2013) Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 73(22):6597–6608PubMedCrossRefGoogle Scholar
  153. 153.
    Garbi N et al (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172(10):5861–5869PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Anz D et al (2010) Immunostimulatory RNA blocks suppression by regulatory T cells. J Immunol 184(2):939–946PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6(15):1382–1387PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Bacher N et al (2013) Interferon-alpha suppresses cAMP to disarm human regulatory T cells. Cancer Res 73(18):5647–5656PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Sisirak V et al (2012) Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res 72(20):5188–5197PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Tarhini AA, Gogas H, Kirkwood JM (2012) IFN-alpha in the treatment of melanoma. J Immunol 189(8):3789–3793PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Natascha Röhrle
    • 1
  • Max M. L. Knott
    • 2
  • David Anz
    • 1
    • 3
    Email author
  1. 1.Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical PharmacologyKlinikum der Ludwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Institute of Pathology of the Ludwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Department of Internal Medicine II, Division of Gastroenterology and HepatologyKlinikum der Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations