Advertisement

CCL21 Programs Immune Activity in Tumor Microenvironment

  • Sherven SharmaEmail author
  • Pournima Kadam
  • Steven Dubinett
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1231)

Abstract

CCL21 promotes immune activity in the tumor microenvironment (TME) by colocalizing dendritic cells (DC) and T cells programing ectopic lymph node architectural structures that correlate with cancer prognosis. Innovative strategies to deliver CCL21 in cancer patients will reactivate the downregulated immune activity in the TME. Immune escape mechanisms are upregulated in the TME that promote tumor immune evasion. CCL21 combined with inhibition of dominant pathways of immune evasion will aid in the development of effective immunotherapy for cancer.

Keywords

CCL21 Tumor microenvironment T cells Dendritic cells Antigen-presenting cells Activated T cells Immune activity Programmed cell death protein 1 (PD-1) Immune checkpoint blockade Immune suppression Immunotherapy 

References

  1. 1.
    Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE et al (2017) Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8(+) T-cell infiltration. Clin Cancer Res 23(16):4556–4568PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766PubMedGoogle Scholar
  4. 4.
    Johnson SK, Kerr KM, Chapman AD, Kennedy MM, King G, Cockburn JS et al (2000) Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer 27:27–35PubMedCrossRefGoogle Scholar
  5. 5.
    Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26:4410–4417PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX et al (2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol 164:4558–4563PubMedCrossRefGoogle Scholar
  8. 8.
    Sharma S, Stolina M, Zhu L, Lin Y, Batra R, Huang M et al (2001) Secondary lymphoid organ chemokine reduces pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 61:6406–6412PubMedGoogle Scholar
  9. 9.
    Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M et al (2004) Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 10:2891–2901PubMedCrossRefGoogle Scholar
  10. 10.
    Yang SC, Batra RK, Hillinger S, Reckamp KL, Strieter RM, Dubinett SM et al (2006) Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 66:3205–3213PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD (1998) Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 95:258–263PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Friedman RS, Jacobelli J, Krummel MF (2006) Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 7:1101–1108. Epub 2006 Sept 10PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Flanagan K, Moroziewicz D, Kwak H, Horig H, Kaufman HL (2004) The lymphoid chemokine CCL21 costimulates naive T cell expansion and Th1 polarization of non-regulatory CD4+ T cells. Cell Immunol 231:75–84. Epub 2005 Jan 21PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sharma S, Miller P, Stolina M, Zhu L, Huang M, Paul R et al (1997) Multi-component gene therapy vaccines for lung cancer: effective eradication of established murine tumors in vivo with Interleukin 7/Herpes Simplex Thymidine Kinase-transduced autologous tumor and ex vivo-activated dendritic cells. Gene Therapy 4:1361–1370PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Miller PW, Sharma S, Stolina M, Butterfield LH, Luo J, Lin Y et al (2000) Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11:53–65PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kirk CJ, Hartigan-O’Connor D, Mule JJ (2001) The dynamics of the T-cell antitumor response: chemokine-secreting dendritic cells can prime tumor-reactive T cells extranodally. Cancer Res 61:8794–8802PubMedGoogle Scholar
  18. 18.
    Novak L, Igoucheva O, Cho S, Alexeev V (2007) Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication. Mol Cancer Ther 6:1755–1764PubMedCrossRefGoogle Scholar
  19. 19.
    Liang CM, Zhong CP, Sun RX, Liu BB, Huang C, Qin J et al (2007) Local expression of secondary lymphoid tissue chemokine delivered by adeno-associated virus within the tumor bed stimulates strong anti-liver tumor immunity. J Virol 81:9502–9511. Epub 2007 Jun 13PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wu S, Xing W, Peng J, Yuan X, Zhao X, Lei P et al (2008) Tumor transfected with CCL21 enhanced reactivity and apoptosis resistance of human monocyte-derived dendritic cells. Immunobiology 213:417–426. Epub 2007 Nov 28PubMedCrossRefGoogle Scholar
  21. 21.
    Yousefieh N, Hahto SM, Stephens AL, Ciavarra RP (2009) Regulated expression of CCL21 in the prostate tumor microenvironment inhibits tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Microenviron 2(1):59–67PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hall B, Andreeff M, Marini F (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283CrossRefGoogle Scholar
  23. 23.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608PubMedGoogle Scholar
  24. 24.
    Tatsumi T, Huang J, Gooding WE, Gambotto A, Robbins PD, Vujanovic NL et al (2003) Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63:6378–6386PubMedGoogle Scholar
  25. 25.
    Lapteva N, Aldrich M, Rollins L, Ren W, Goltsova T, Chen SY et al (2009) Attraction and activation of dendritic cells at the site of tumor elicits potent antitumor immunity. Mol Ther 17:1626–1636. Epub 2009 Jun 16PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Coppola D, Mule JJ (2008) Ectopic lymph nodes within human solid tumors. J Clin Oncol 26:4369–4370PubMedCrossRefGoogle Scholar
  27. 27.
    Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L et al (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070PubMedGoogle Scholar
  28. 28.
    Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH (2015) Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nature Commun 6:7114CrossRefGoogle Scholar
  29. 29.
    Baratelli F, Takedatsu H, Hazra S, Peebles K, Luo J, Kurimoto PS et al (2008) Pre-clinical characterization of GMP grade CCL21-gene modified dendritic cells for application in a phase I trial in non-small cell lung cancer. J Transl Med 6:38PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462:426–432PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li WA, Mooney DJ (2013) Materials based tumor immunotherapy vaccines. Curr Opin Immunol 25:238–245PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hu D, Lau OD, Wang L, Wang G, Schaue D, Zhu L et al (2012) A novel modular polymer platform for the treatment of head and neck squamous cell carcinoma in an animal model. Arch Otolaryngol Head Neck Surg 138:412–417PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lin Y, Luo J, Zhu WE, Srivastava M, Schaue D, Elashoff DA et al (2014) A cytokine-delivering polymer is effective in reducing tumor burden in a head and neck squamous cell carcinoma murine model. Otolaryngol Head Neck Surg 151:447–453PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ross DA, Hundal JS, Son YH, Ariyan S, Shin J, Lowlicht R et al (2004) Microsurgical free flap reconstruction outcomes in head and neck cancer patients after surgical extirpation and intraoperative brachytherapy. Laryngoscope 114:1170–1176PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ (2009) Infection-mimicking materials to program dendritic cells in situ. Nat Mater 8:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kar UK, Srivastava MK, Andersson A, Baratelli F, Huang M, Kickhoefer VA et al (2011) Novel CCL21-vault nanocapsule intratumoral delivery inhibits lung cancer growth. PLoS One 6:e18758PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA et al (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348:803–808PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA et al (2015) Overall survival and long-term safety of nivolumab (Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33(18):2004–2012PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Soria JC, Marabelle A, Brahmer JR, Gettinger S (2015) Immune checkpoint modulation for non-small cell lung cancer. Clin Cancer Res 21:2256–2262PubMedCrossRefGoogle Scholar
  42. 42.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028PubMedCrossRefGoogle Scholar
  43. 43.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Delamarre L, Mellman I, Yadav M (2015) Cancer immunotherapy. Neo approaches to cancer vaccines. Science 348:760–761PubMedCrossRefGoogle Scholar
  45. 45.
    Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94:107–116PubMedCrossRefGoogle Scholar
  46. 46.
    Salehi-Rad R, Walser T, So S, Park S, Sharma L, Jay SD (2017) CCL21 combined with PD-1 blockade cooperatively inhibits tumor growth in KRAS murine model of NSCLC. J Thorac Oncol 12:S1537CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sherven Sharma
    • 1
    • 2
    • 3
    Email author
  • Pournima Kadam
    • 2
  • Steven Dubinett
    • 1
    • 2
    • 3
  1. 1.Department of Medicine, UCLA Lung Cancer Research ProgramDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Molecular Gene Medicine Laboratory, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUSA
  3. 3.Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations