Influence of Contact Network Topology on the Spread of Tuberculosis

  • Eduardo R. Pinto
  • Erivelton G. Nepomuceno
  • Andriana S. L. O. CampanharoEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)


This paper presents the influence of the complex networks topology on the spread of Tuberculosis with the use of the Individual-Based Model (IBM). Five complex network models were used with the IBM, namely, random, small world, scale-free, modular and hierarchical models. For every model, we applied the usual topological properties available in literature for the characterization of complex networks. Afterwards, we verified the topological effect of the contact networks in the evolution of tuberculosis and it was observed that different contact networks result in different epidemic thresholds \((\beta ^*)\) for the spread of tuberculosis. More specifically, we noted that networks that have greater heterogeneity of connections need a lower \(\beta ^*\), however when the value of the infection rate \((\beta )\) is large, the number of individuals infected are similar. It is believed that this observation may contribute to actions to reduce and eradicate the disease.


Tuberculosis Topological effect Complex networks Individual-Based Model Complex systems 



E. R. Pinto acknowledges the support of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), grant 1770124 and supported by resources supplied by the Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP). A. S. L. O. Campanharo acknowledges the support of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant 2018/25358-9. All codes were written in C language and all figures were generated with XmGrace and Pajek.


  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dodds, P.S., Watts, D.J., Sabel, C.F.: Information exchange and the robustness of organizational networks. Proc. Nat. Acad. Sci. 100(21), 12516–12521 (2003)CrossRefGoogle Scholar
  3. 3.
    Edling, C.R., Åberg, Y., Liljeros, F., Amaral, L.A.N., Stanley, H.E.: The web of human sexual contacts. Nature 411(6840), 907–908 (2002)Google Scholar
  4. 4.
    Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Keeling, M.J., Grenfell, B.T.: Individual-based perspectives on R0. J. Theor. Biol. 203(1), 51–61 (2000)CrossRefGoogle Scholar
  6. 6.
    Moreno, V., et al.: The role of mobility and health disparities on the transmission dynamics of tuberculosis. Theor. Biol. Med. Modell. 14(1), 1–17 (2017)CrossRefGoogle Scholar
  7. 7.
    Nepomuceno, E.G., Takahashi, R.H.C., Aguirre, L.A.: Individual based-model (IBM): an alternative framework for epidemiological compartment models. Biometric Braz. J./Revista Brasileira de Biometria 34(1), 133–162 (2016)Google Scholar
  8. 8.
    Nepomuceno, E.G., Barbosa, A.M., Silva, M.X., Perc, M.: Individual-based modelling and control of bovine brucellosis. Roy. Soc. Open Sci. 5(5), 180200 (2018)CrossRefGoogle Scholar
  9. 9.
    Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York (2010)CrossRefGoogle Scholar
  11. 11.
    World Health Organization, et al.: Global tuberculosis report 2016. World Health Organization (2016)Google Scholar
  12. 12.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Revi. Mod. Phys. 87(3), 925–979 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pinto, E.R., Campanharo, A.S.L.O.: Estudo do efeito topológico das redes contato na propagação de doenças infecciosas. Proc. Ser. Braz. Soc. Comput. Appl. Math. 6(2), 1–7 (2018)Google Scholar
  14. 14.
    Solé, R.V., Gamarra, J.G., Ginovart, M., López, D.: Controlling chaos in ecology: from deterministic to individual-based models. Bull. Math. Biol. 61(6), 1187–1207 (1999)CrossRefGoogle Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eduardo R. Pinto
    • 1
  • Erivelton G. Nepomuceno
    • 2
  • Andriana S. L. O. Campanharo
    • 3
    Email author
  1. 1.Institute of Biosciences, Postgraduate Program in BiometricsSão Paulo State University (UNESP)BotucatuBrazil
  2. 2.Department of Electrical EngineeringFederal University of São João del-Rei (UFSJ)São João del-ReiBrazil
  3. 3.Institute of Biosciences, Department of BiostatisticsSão Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations