Advertisement

The Muscle-Machine Interface After Stroke in Improvement of Hand Extension: Case Report

  • Jessika M. FiusaEmail author
  • Gabrielly S. Yonamine
  • Giovanna L. C. Fumagali
  • Gabriela F. Moraes
  • Percy Nohama
  • Eddy Krueger
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1068)

Abstract

The muscle-machine interface assists in the neuroplasticity of healthy with lesions during the combination of electromyography techniques and functional electrical stimulation (EMG-FES). This case report aimed to evaluate this interface for rehabilitation in a post-stroke participant. For the treatment, an EMG-FES interface was associated with functional exercises for wrist and finger extension. This case report aimed to evaluate this interface for rehabilitation in a post-stroke participant. The protocol was applied 3x/week during 12 sessions. Were applied eliminatory tests (Mini mental exam, active range of motion and Ashworth modified scale), functional tests (Fugl Meyer scale and 9 hole peg test) and electromyography evaluation in time (EMGRMS) and frequency (EMGMDF) domain. In the functional tests occurred increase in sensibility, mobility, oriented tasks and pain reduction (18/48 to 23/48) and the electromyography showed an increase 35.12 VRMS in EMGRMS and 123 Hz in EMGMDF. This interface is effective for improving voluntary movement of hand extension after stroke.

Keywords

Neuroplasticity Electromyography Functional electrical stimulation Rehabilitation 

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. EK and PN thanks CNPq - National Council for Scientific and Technological Development for financial support processes n. 151210/2018-7 and 314241/2018-3, respectively. We thank Taimara Zimath for her collaboration in this study with the realization of the assessments, and Carla Rinaldin for draw the Fig. 5.

References

  1. 1.
    Dąbrowski, J., et al.: Brain functional reserve in the context of neuroplasticity after stroke. Neural Plast. 2019, 1–10 (2019)CrossRefGoogle Scholar
  2. 2.
    Persch, A.C., Gugiu, P.C., Velozo, C.A., Page, S.J.: Rasch analysis of the wrist and hand fugl-meyer. J. Neurol. Phys. Ther. 39(3), 185–192 (2015)CrossRefGoogle Scholar
  3. 3.
    Ambrosini, E., et al.: The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: first results of the RETRAINER project. In: IEEE International Conference on Rehabilitation Robotics, pp. 56–61 (2017)Google Scholar
  4. 4.
    Camona, C., Wilkins, K.B., Drogos, J., Sullivan, J.E., Dewald, J.P.A., Yao, J.: Improving hand function of severely impaired chronic hemiparetic stroke individuals using task-specific training with the rein-hand system: a case series. Front. Neurol. 9, 923 (2018)Google Scholar
  5. 5.
    Bae, S., Kim, K.Y.: Dual-afferent sensory input training for voluntary movement after stroke: a pilot randomized controlled study. NeuroRehabilitation 40(3), 293–300 (2017)CrossRefGoogle Scholar
  6. 6.
    Piyus, C.K., Cherian, V.A., Nageswaran, S.: EMG based FES for post-stroke rehabilitation. In: IOP Conference Series: Materials Science and Engineering, vol. 263, no. 5 (2017)CrossRefGoogle Scholar
  7. 7.
    von Tscharner, V.: Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J. Electromyogr. Kinesiol. 10(6), 433–445 (2000)CrossRefGoogle Scholar
  8. 8.
    Jeon, S., Kim, Y., Jung, K., Chung, Y.: The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: a pilot study. NeuroRehabilitation 40(1), 69–75 (2017)CrossRefGoogle Scholar
  9. 9.
    Tabernig, C.B., Lopez, C.A., Carrere, L.C., Spaich, E.G., Ballario, C.H.: Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface. J. Rehabil. Assist. Technol. Eng. 5, 205566831878928 (2018)Google Scholar
  10. 10.
    Zhou, Y., Fang, Y., Zeng, J., Li, K., Liu, H.: A multi-channel EMG-driven FES solution for stroke rehabilitation. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds.) ICIRA 2018. LNCS (LNAI), vol. 10984, pp. 235–243. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97586-3_21CrossRefGoogle Scholar
  11. 11.
    Belardinelli, P., Laer, L., Ortiz, E., Braun, C., Gharabaghi, A.: Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis. NeuroImage Clin. 14, 726–33 (2017). http://dx.doi.org/10.1016/j.nicl.2017.03.005CrossRefGoogle Scholar
  12. 12.
    Dias, M.P.F.: Efeito imediato da realidade virtual sobre a atividade eletroencefalográfica e eletromiográfica no membro superior parético após acidente vascular encefálico (2018)Google Scholar
  13. 13.
    Batista, T.V.V.: Reconhecimento de gestos por sinais eletromiográficos para um jogo voltado à reabilitação de mãos e punho, vol. 549. UFPB (2017)Google Scholar
  14. 14.
    César, J., Costa, S., Catarina, T., Clementino, A., Campos, T.F., De Melo, L.P.: Função motora melhora em pacientes pós-acidente vascular cerebral submetidos à terapia espelho. Rev. de Terapia Ocupacional da Universidade de São Paulo 28(3), 333–339 (2017)Google Scholar
  15. 15.
    Gillentine, M.A., et al.: Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. J. Autism. Dev. Disord. 47(3), 549–562 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciências da Reabilitação UEL-UNOPAR, Laboratório de Engenharia Neural e Reabilitação – LENeRUniversidade Estadual de Londrina – UELLondrinaBrazil
  2. 2.Graduação em Fisioterapia UEL, Laboratório de Engenharia Neural e Reabilitação – LENeRUniversidade Estadual de Londrina – UELLondrinaBrazil
  3. 3.Residência em Fisioterapia Neuro-Funcional UEL, Laboratório de Engenharia Neural e Reabilitação – LENeRUniversidade Estadual de Londrina – UELLondrinaBrazil
  4. 4.Programa de Pós-Graduação em Tecnologia em Saúde – PPGTSPontifícia Universidade Católica do Paraná – PUCPRCuritibaBrazil
  5. 5.Laboratório de Engenharia Neural e Reabilitação – LENeRUniversidade Estadual de Londrina – UELLondrinaBrazil

Personalised recommendations