Recent Advances in the Insect Natural Product Chemistry: Structural Diversity and Their Applications

  • Luqman Jameel Rather
  • Mohammad Fawad Ansari
  • Qing LiEmail author


Phylum Arthropoda is the largest phylum of animal kingdom with around one million different species comprising more than 80% of all known animal species. These include insects, spiders, ticks, lice, centipedes, shrimp, and crabs with several less known species as well. Arthropod natural products represent structurally and functionally diverse chemical compounds ranging from fatty acids, polyketide, terpenoids to nucleosides. Most of the chemical compounds from arthropods are of polyacetate or fatty acid origin with highly nonpolar structures. Chemical analysis and spectroscopic identifications of new and fascinating structures have led to analyze the biological roles of identified compounds. More recently, small-molecule metabolites are facilitating for identification of novel types of chemical and ecological interactions. Besides metabolic chemistry and various biological applications, insect natural products are found to be active ingredients of various natural dyes (cochineal and lac dye). The semisynthetic derivative carmine later found its use as a biological staining and as a food coloring agent.


Arthropoda Insects Natural products Semisynthetic Environmental interactions 



Financial support provided by Southwest University Chongqing, China, as Postdoctoral Fellow for Dr. Luqman Jameel Rather is highly acknowledged.


  1. Abubakar MB, Abdullah WZ, Sulaiman SA, Suen AB (2012) A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey. Int J Mol Sci 13:15054–15073CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc J-C, Lindtner O, Moldeus P, Mortensen A, Mosesso P, Oskarsson A, Parent-Massin D, Stankovic I, Waalkens-Berendsen IW, Woutersen RA, Wright M, Maged Y (2015) EFSA ANS panel (EFSA panel on food additives and nutrient sources added to food). Scientific opinion on the re-evaluation of cochineal, carminic acid, carmines (E120) as a food additive. Eur Food Saf Auth J 13:4288Google Scholar
  3. Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahn MY, Shim SH, Jeong HK, Ryu KS (2008) Purification of a dimethyladenosine compound from silkworm pupae as a vasorelaxation substance. J Ethnopharmacol 117:115–122CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aldrich JR, Bartelt RJ, Dickens JC, Knight AL, Light DM, Tumlinson JH (2003) Insect chemical ecology research in the United States Department of Agriculture–Agricultural Research Service. Pest Manag Sci 59:777–787CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alonso-Castro AJ (2014) Use of medicinal fauna in Mexican traditional medicine. J Ethnopharmacol 152:53–70CrossRefPubMedPubMedCentralGoogle Scholar
  7. Behroozi J, Divsalar A, Saboury AA (2014) Honey bee venom decreases the complications of diabetes by preventing hemoglobin glycation. J Mol Liq 199:371–375CrossRefGoogle Scholar
  8. Bellik Y (2015) Bee venom: its potential use in alternative medicine. Anti Infec Agents 13:3–16CrossRefGoogle Scholar
  9. Benítez G (2011) Animals used for medicinal and magico-religious purposes in western Granada Province, Andalusia (Spain). J Ethnopharmacol 137:1113–1123CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berthold N, Czihal P, Fritsche S, Sauer U, Schiffer G, Knappe D, Alber G, Hoffmann R (2013) Novel apidaecin1b analogs with superior serum stabilities for treatment of infections by gram-negative pathogens. Antimicrob Agents Chemother 57:402–409CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bexfield A, Bond AE, Morgan C (2010) Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. Br J Dermatol 162:554–562CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bingham SJ, Tyman JHP (2000) The synthesis of kermesic acid by acetylation-aided tautomerism of 6-chloro-2,5,8-trihydroxynaphtho-1,4-quinone. Chem Commun:925–926Google Scholar
  13. Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borges ME, Tejera RL, Diaz L, Esparza P, Ibáñez E (2012) Natural dyes extraction from cochineal (Dactylopius coccus). New extraction methods. Food Chem 132:1855–1860CrossRefGoogle Scholar
  15. Brudzynski K, Abubaker K, Wang T (2012) Powerful killing by buckwheat honeys is concentration dependent, involves complete DNA degradation and requires hydrogen peroxide. Front Microbiol 3(242):2012Google Scholar
  16. Budhraja A, Gao N, Zhang Z, Son Y-O, Cheng S, Wang X, Ding S, Hitron A, Chen G, Luo J, Shi X (2012) Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther 11:132–142CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  18. Burwood R, Read G, Schofield K, Wright D (1965) The pigments of stick lac. Part I. isolation and preliminary examination. J Chem Soc 0:6067–6073CrossRefGoogle Scholar
  19. Burwood R, Read G, Schofield K, Wright DE (1967) The pigments of stick lac: part II. The structure of laccaic acid A. J Chem Soc 9:842–851Google Scholar
  20. Campos JF, Dos Santos UP, Macorini LF, De Melo AM, Balestieri JB, Paredes-Gamero EJ et al (2014) Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae). Food Chem Toxicol 65:374–380CrossRefPubMedPubMedCentralGoogle Scholar
  21. Campos JF, Dos Santos UP, Dos Santos Da Rocha P, Damião MJ, Balestieri JB, Cardoso CA et al (2015, 2015) Antimicrobial, antioxidant, antiinflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid Based Complement Alternat Med:296186Google Scholar
  22. Cazander G, Schreurs MWJ, Renwarin L, Dorresteijn C, Hamann D, Jukema GN (2012) Maggot excretions affect the human complement system. Wound Repair Regen 20:879–886CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chairat M, Rattanaphani S, Bremner JB, Rattanaphani V (2005) An adsorption and kinetic study of lac dyeing on silk. Dyes Pigments 64:231–241CrossRefGoogle Scholar
  24. Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, Church JC, Pritchard DI (2003) Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol 148:14–23CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92:151–183CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen L, Lu YY, Hu QB, Fadamiro Y (2012) Similarity in venom alkaloid chemistry of alate queens of imported fire ants: implication for hybridization between Solenopsis richteri and S. invicta in the southern United States. Chem Biodivers 9:702–713CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cherniack EP (2010) Bugs as drugs, part 1: insects. The “new” alternative medicine for the 21st century? Altern Med Rev 15:124–135PubMedPubMedCentralGoogle Scholar
  28. Chernysh S, Irina K, Irina A (2012) Anti-tumor activity of immunomodulatory peptide alloferon-1 in mouse tumor transplantation model. Int Immunopharmacol 12:312–314CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coelho GR, Mendonça RZ, De Senna Vilar K, Figueiredo CA, Badari JC, Taniwaki N et al (2015) Antiviral action of hydromethanolic extract of geopropolis from Scaptotrigona postica against antiherpes simplex virus (HSV-1). Evid Based Complement Alternat Med 2015:296086CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cooksey CJ (2018) The red insect dyes: carminic, kermesic and laccaic acids and their derivatives. Biotech Histochem.
  31. Cooper RA, Lindsay E, Molan PC (2011) Testing the susceptibility to manuka honey of streptococci isolated from wound swabs. J ApiProd ApiMed Sci 3:117–122CrossRefGoogle Scholar
  32. Corti A (1851) Recherches sur l’organe de l’ouie des mummifères. Z Wiss Zool 3:109–169Google Scholar
  33. Costa-Neto EM (2002) The use of insects in folk medicine in the state of Bahia, northeastern Brazil, with notes on insects reported elsewhere in Brazilian folk medicine. Human Ecol 30:245–263CrossRefGoogle Scholar
  34. Daleprane JB, Abdalla DS (2013) Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. Evid Based Complement Alternat Med 2013:175135CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dang Y-J, Zhu C-Y (2013) Oral bioavailability of cantharidin loaded solid lipid nanoparticles. BMC Chin Med 8:8CrossRefGoogle Scholar
  36. Danneels EL, Rivers DB, de Graaf DC (2010) Venom proteins of the parasitoid wasp Nasoniavitri pennis: recent discovery of an untapped pharmacopee. Toxins 2:494–516CrossRefPubMedPubMedCentralGoogle Scholar
  37. Degenhardt J, Gershenzon J, Baldwin IT, Kessler A (2003) Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr Opin Biotechnol 14:169–176CrossRefGoogle Scholar
  38. Dimroth O, Kämmerer H (1920) Ṻeber die Carminsäure. Ber Dtsch Chem Ges 53:471–480CrossRefGoogle Scholar
  39. Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757CrossRefGoogle Scholar
  40. Erejuwa OO, Sulaiman SA, Wahab MS (2012) Honey: a novel antioxidant. Molecules 17:4400–4423CrossRefPubMedPubMedCentralGoogle Scholar
  41. Farrell BD (1998) “Inordinate fondness” explained: why are there so many beetles? Science 281:555–559CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fernandez-Cabezudo MJ, El-Kharrag R, Torab F, Bashir G, George JA, El-Taji H, al Ramadi BK (2013) Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model. PLoS One 8:0055993CrossRefGoogle Scholar
  43. Ferreira ESB, Hulme AN, McNab H, Quye A (2004) The natural constituents of historical textile dyes. Chem Soc Rev 33:329–336CrossRefGoogle Scholar
  44. Freires IA, De Alencar SM, Rosalen PL (2016) A pharmacological perspective on the use of Brazilian red Propolis and its isolated compounds against human diseases. Eur J Med Chem 110:267–279CrossRefGoogle Scholar
  45. Gadgil DD, Rao AVR, Venkatarman K (1968) Structure of kermesic acid. Tetrahedron Lett 9:2223–2227CrossRefGoogle Scholar
  46. Galvis CEP, Mendez LYV, Kouznetsov VV (2013a) Cantharidin-based small molecules as potential therapeutic agents. Chem Biol Drug Des 82:477–499CrossRefGoogle Scholar
  47. Galvis CE, Méndez LY, Kouznetsov VV (2013b) Cantharidin-based small molecules as potential therapeutic agents. Chem Biol Drug Des 82:477–499CrossRefGoogle Scholar
  48. Gomes A, Alam MA, Bhattacharya S, Dasgupta SC, Mukherjee S, Bhattacharya S, Gomes A (2011) Ethno biological usage of zoo products in rheumatoid arthritis. Indian J Exp Biol 49:565–573PubMedPubMedCentralGoogle Scholar
  49. Graetz TJ, Tellor BR, Smith JR, Avidan MS (2011) Desirudin: a review of the pharmacology and clinical application for the prevention of deep vein thrombosis. Expert Rev Cardiovasc Ther 9:1101–1109CrossRefGoogle Scholar
  50. Heinen TE, De Veiga AB (2011) Arthropod venoms and cancer. Toxicon 57:497–511CrossRefPubMedPubMedCentralGoogle Scholar
  51. Henriques AF, Jenkins RE, Burton NF, Cooper RA (2011) The effect of manuka honey on the structure of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30:167–171CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hoffman DR (2010) Ant venoms. Curr Opin Allergy Clin Immunol 10:342–346CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375CrossRefPubMedPubMedCentralGoogle Scholar
  54. Huber JT (2009) Biodiversity of Hymenoptera. In: Foottit RG, Adler PH (eds) Insect biodiversity: science and society. Blackwell Publishing Ltd, West Sussex, pp 303–323CrossRefGoogle Scholar
  55. Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H (2000) Antitumor compounds isolated from higher plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Science, Amsterdam, pp 269–350Google Scholar
  56. Jaroli DP, Mahawar MM, Vyas N (2010) An ethno zoological study in the adjoining areas of Mount Abu wildlife sanctuary, India. J Ethnobiol Ethnomed 6:6CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jenkins RE, Cooper R (2012) Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin. J Antimicrob Chemother 67:1405–1407CrossRefGoogle Scholar
  58. Jull AB, Rodgers A, Walker N (2008) Honey as a topical treatment forwounds. Cochrane Database of Systematic Rev 4:CD005083Google Scholar
  59. Kaltenpoth M, Göttler W, Dale C, Stubblefield JW, Herzner G, Röser-Müller K, Strohm E (2006) Candidatus Streptomyces philanthi’, an endosymbiotic streptomycete in the antennae of Philanthus digger wasps. Int J Syst Evol Microbiol 56:1403–1411CrossRefGoogle Scholar
  60. Kamel MM, El-Shishtawy RM, Youssef BM, Mashaly H (2007) Ultrasonic assisted dyeing. IV. Dyeing of cationised cotton with lac natural dye. Dyes Pigments 73:279–284CrossRefGoogle Scholar
  61. Kang SJ, Kim DH, Mishig-Ochir T et al (2012) Antimicrobial peptides: their physicochemical properties and therapeutic application. Arch Pharm Res 35:409–413CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kazemzadeh-Narbat M, Noordin S, Masri BA et al (2012) Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater 100:1344–1352CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kazimırova M, Stibraniova I (2013) Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Cell Infect Microbiol 3:2013Google Scholar
  64. Khan MA, Khan M, Srivastava PK, Mohammad F (2004) Extraction of lac red dye and its application on wool. Colourage 51:27–30Google Scholar
  65. Khan MI, Shahid M, Khan SA, Yusuf M, Khan MA, Mohammad F (2012) Studies on application of lac natural dye on wool using eco-friendly metal mordants. Colourage 59:42–51Google Scholar
  66. Klos D (2005) The Dyer’s companion. Interweave Press, LovelandGoogle Scholar
  67. Knecht E (1941) A manual of dyeing for the use of practical dyers, manufacturers, students and all interested in the art of dyeing, London, vol 1, 9th edn. Griffin and Company LtdGoogle Scholar
  68. Koehler S, Doubský J, Kaltenpoth M (2013) Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspring. Front Zool 10(3)Google Scholar
  69. Kongkachuichay P, Shitangkoon A, Chinwongamorn N (2002) Thermodynamics of adsorption of laccaic acid on silk. Dyes Pigments 53:179–185CrossRefGoogle Scholar
  70. Koren CZ (1994) HPLC analysis of the natural scale insect, madder and indigoid dyes. J Soc Dye Colour 110:273–277CrossRefGoogle Scholar
  71. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, Strohm E, Svatoš A (2010) Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol 6:261–263CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kwakman PHS, te Velde AA, de Boer L, Vandenbroucke-Grauls CMJE, Zaat SAJ (2011) Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6(3):0017709CrossRefGoogle Scholar
  73. Lee KH (1993) Antineoplastic agents and their analogues from Chinese traditional medicine. In: Kinghorn AD, Balandrin M (eds) Human medicinal agents from plants, vol 534. ACS Symp Ser, pp 170–190Google Scholar
  74. Lee DS, Sinno S, Khachemoune A (2011) Honey and wound healing: an overview. Am J Clin Dermatol 12:181–190CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lee WR, Park KK, Pak SC (2015) The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins 7:4758–4772CrossRefPubMedPubMedCentralGoogle Scholar
  76. Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X (2010) Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell cycle arrest and apoptosis. Cancer Sci 101:1226–1233CrossRefPubMedPubMedCentralGoogle Scholar
  77. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215CrossRefPubMedPubMedCentralGoogle Scholar
  78. Li X, Liu N, Xia X (2013) The effects of maggot secretions on the inflammatory cytokines in serum of traumatic rats. Afr J Tradit Complement Altern Med 10:151–154PubMedPubMedCentralGoogle Scholar
  79. Lissina E, Young B, Urbanus ML, Guan XL, Lowenson J, Hoon S, Baryshnikova A, Riezman I, Michaut M, Riezman H, Cowen LE, Wenk MR, Clarke SG, Giaever G, Nislow C (2011) A systems biology approach reveals the role of a novel methyl transferase in response to chemical stress and lipid homeostasis. PLoS Genet 7:e1002332CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lloyd A (1980) Extraction and chemistry of cochineal. Food Chem 5:91–107CrossRefGoogle Scholar
  81. Lockhart GJ (2007) Ants and other great medicines. partially published online by Jacobson AL.
  82. Lu J, Sun Q, Tu ZC, Lv Q, Shui PX, Cheng YX (2015) Identification of Nacetyldopamine dimers from the dung beetle Catharsius molossus and their COX-1 and COX-2 inhibitory activities. Molecules 20:15589–15596CrossRefPubMedPubMedCentralGoogle Scholar
  83. Luetchford KA, Chaudhuri JB, De Bank PA (2020) Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Mater Sci Eng C 106:110116–110124CrossRefGoogle Scholar
  84. MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2:71–80CrossRefPubMedPubMedCentralGoogle Scholar
  85. Maddocks SE, Jenkins RE (2013) Honey: a sweet solution to the growing problem of antimicrobial resistance? Future Microbiol 8:1419–1429CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mahawar MM, Jaroli DP (2008) Traditional zoo therapeutic studies in India: a review. J Ethnobiol Ethnomed 4:17CrossRefPubMedPubMedCentralGoogle Scholar
  87. Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction – an innovative and promising extraction tool for medicinal plant research. Pharmacog Rev 1:7–10Google Scholar
  88. Mandala MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1:154–160CrossRefGoogle Scholar
  89. Mayer F, Cook AH (1943) The chemistry of natural coloring matters: the constitutions, properties, and biological relations of the important natural pigments. Reinhold Publishing Corporation, New YorkCrossRefGoogle Scholar
  90. McLoone P, Warnock M, Fyfe L (2015) Honey: a realistic antimicrobial for disorders of the skin. J Microbiol Immunol Infect 49:161–167CrossRefPubMedPubMedCentralGoogle Scholar
  91. Mehandale AR, Rao AVR, Shaikh IN, Venkataraman K (1968) Desoxyerythrolaccin and laccaic acid D. Tetrahedron Lett 9:2231–2234CrossRefGoogle Scholar
  92. Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39:922–931CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mlcek J, Borkovcova M, Bednarova M (2014) Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine – a review. J Cent Eur Agric 15:225–237CrossRefGoogle Scholar
  94. Monteiro MC, Romão PRT, Soares AM (2009) Pharmacological perspectives of wasp venom. Protein Pept Lett 16:944–952CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ntwasa M, Goto A, Kurata S (2012) Coleopteran antimicrobial peptides: prospects for clinical applications. Int J Microbiol 2012:101989CrossRefPubMedPubMedCentralGoogle Scholar
  96. Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30:5775–5784CrossRefPubMedPubMedCentralGoogle Scholar
  97. Oka H, Ito Y, Yamada S, Kagami T, Hayakawa J, Harada K, Atsumi E, Suzuki M, Suzuki M, Odani H, Akahori S, Maeda K, Nakazawa H, Ito Y (1998) Separation of lac dye components by high-speed counter-current chromatography. J Chromatogr A 813:71–77CrossRefPubMedPubMedCentralGoogle Scholar
  98. Orsolic N (2009) Bee honey and cancer. J ApiProd ApiMed Sci 1:93–103CrossRefGoogle Scholar
  99. Oršolić N (2012) Bee venom in cancer therapy. Cancer Metast Rev 31:173–194CrossRefGoogle Scholar
  100. Ostorhazi E, Holub MC, Rozgonyi F, Harmos F, Cassone M, Wade JD, Otvos L Jr (2011) Broad-spectrum antimicrobial efficacy of peptide A3-APO in mouse models of multidrug-resistant wound and lung infections cannot be explained by in vitro activity against the pathogens involved. Int J Antimicrob Agents 37:480–484CrossRefPubMedPubMedCentralGoogle Scholar
  101. Overeem JC, Van der Kerk GJM (1964) Mollisin, a naturally occurring chlorine-containing quinone. Part IV. Revised structures for cochenillic acid and for the insect pigments, carminic and kermesic acids. Recl Trav Chim Pays-Bas 83:1023–1035CrossRefGoogle Scholar
  102. Pandhare ED, Rao AVR, Srinivasan R, Venkataraman K (1966) Lac pigments. Tetrahedron 8:229–239CrossRefGoogle Scholar
  103. Pandhare ED, Rao AVR, Shaikh IN, Venkataraman K (1967) The constitution of laccaic acid B. Tetrahedron Lett 8:2437–2440CrossRefGoogle Scholar
  104. Park JH, Jeong YJ, Park KK, Cho HJ, Chung IK, Min KS, Kim M, Lee KG, Yeo JH, Park KK, Chang YC (2010) Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kB and AP-1-dependent MMP-9 expression. Mol Cells 29:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  105. Patricia V, Oliverio V, Triny L, Favián M (2015) Meliponini biodiversity and medicinal uses of pot-honey from ElOro province in Ecuador. Emir J Food Agric 27:502–506CrossRefGoogle Scholar
  106. Pemberton RW (1999) Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol 65:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  107. Perez-Riverol A, Aparecido dos Santos-Pinto JR, Lasa AM, Palma MS, Brochetto-Braga MR (2017) Wasp venomic: unravelling the toxins arsenal of Polybia Paulista venom and its potential pharmaceutical applications. J Proteome 161:88–103CrossRefGoogle Scholar
  108. Perkin AG, Everest AE (1918) The natural organic colouring matters. Longmans, Green and Co, LondonGoogle Scholar
  109. Poinar GO Jr, Marshall CJ, Buckley R (2007) One hundred million years of chemical warfare by insects. J Chem Ecol 33:1663–1669CrossRefPubMedPubMedCentralGoogle Scholar
  110. Quinones JP, Roschger C, Zierer A, Peniche C, Bruggemann O (2019) Steroid-grafted silk fibroin conjugates for drug and agrochemical delivery. Eur Poly J 119:169–175CrossRefGoogle Scholar
  111. Rao VR, Shaikh IN, Venkataraman K (1968) Laccaic acid C, the first natural anthraquinone with an amino acid side chain. Indian J Chem 7:188–189Google Scholar
  112. Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P (2011) Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41:747–769CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rattanaphani S, Chairat M, Bremner JB, Rattanaphani V (2007) An adsorption and kinetic study of lac dyeing on cotton pretreated with chitosan. Dyes Pigments 72:88–96CrossRefGoogle Scholar
  114. Roberts AE, Maddocks SE, Cooper RA (2012) Manuka honey is bactericidal against Pseudomonas aeruginosa and results in differential expression of OprF and algD. Microbiol 158:3005–3013CrossRefGoogle Scholar
  115. Rosenberg E (2008) Characterisation of historical organic dyestuffs by liquid chromatography-mass spectrometry. Anal Bioanal Chem 391:33–57CrossRefPubMedPubMedCentralGoogle Scholar
  116. Sachetto ATA, Mackman N (2019) Modulation of the mammalian coagulation system by venoms and other proteins from snakes, arthropods, nematodes and insects. Thrombosis Res 178:145–154CrossRefGoogle Scholar
  117. Saidemberg DM, Da Silva-Filho LC, Tognoli LM, Tormena CF, Palma MS (2010) Polybioside, a neuroactive compound from the venom of the social wasp Polybia paulista. J Nat Prod 73:527–531CrossRefPubMedPubMedCentralGoogle Scholar
  118. Schmitt P, Günther H, Hägele G, Stilke R (1984) A 1H and 13C NMR study of carminic acid. Magn Reson Chem 22:446–449Google Scholar
  119. Seckam A, Cooper R (2013) Understanding how honey impacts on wounds: an update on recent research findings. Wounds Int 4:20–24Google Scholar
  120. Seybold SJ (2004) Preface: the eighth day of discovery: molecular biology comes to chemical ecology. J Chem Ecol 30:2327–2333CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sforcin JM, Bankova V (2011) Propolis: is there a potential for the development of new drugs? J Ethnopharmacol 133:253–260CrossRefPubMedPubMedCentralGoogle Scholar
  122. Sherman RA, Hall MJR, Thomas S (2000) Medicinal maggots: an ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81CrossRefPubMedPubMedCentralGoogle Scholar
  123. Silva JC, Rodrigues S, Feás X, Estevinho LM (2012) Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem Toxicol 50:1790–1795CrossRefPubMedPubMedCentralGoogle Scholar
  124. Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Pept Lett 15:578–585CrossRefPubMedPubMedCentralGoogle Scholar
  125. Son DJ, Lee JW, Lee YH (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270CrossRefPubMedPubMedCentralGoogle Scholar
  126. Song ZW, Liu P, Yin WP, Jiang YL, Ren YL (2012) Isolation and identification of antibacterial neo-compounds from the red ants of ChangBai Mountain, Tetramorium sp. Bioorg Med Chem Lett 22:2175–2181CrossRefPubMedPubMedCentralGoogle Scholar
  127. Spagnuolo C, Russo M, Bilotto S, Tedesco I, Laratta B, Russo GL (2012) Dietary polyphenols in cancer prevention: the example of the flavonoid quercetin in leukemia. Ann N Y Acad Sci 1259:95–103CrossRefPubMedPubMedCentralGoogle Scholar
  128. Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules 11:969–974CrossRefPubMedPubMedCentralGoogle Scholar
  129. Szliszka E, Krol W (2013) Polyphenols isolated from propolis augment TRAIL-induced apoptosis in cancer cells. Evid Based Comp Altern Med 2013:731940Google Scholar
  130. Takeuchi I, Shimamur Y, Kakami Y, Kameda T, Hattori K, Miura S, Shirai H, Okumura M, Inagi T, Terada H, Makino K (2019) Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloid Surf B Biointerf 175:564–568CrossRefGoogle Scholar
  131. Tang JJ, Zhang L, Jiang LP, Di L, Yan YM, Tu ZC et al (2014) Dopamine derivatives from the insect Polyrhachis dives as inhibitors of ROCK1/2 and stimulators of neural stem cell proliferation. Tetrahedron 70:8852–8857CrossRefGoogle Scholar
  132. Tiedemann EJ, Yang Y (1995) Fiber-safe extraction of red mordant dyes from hair fibers. J Am Inst Conserv 34:195–206CrossRefGoogle Scholar
  133. Tonks AJ, Dudley E, Porter NG, Parton J, Brazier J, Smith EL, Tonks A (2007) A5.8-kDa component of manuka honey stimulates immune cells via TLR4. J Leukoc Biol 82:1147–1155CrossRefPubMedPubMedCentralGoogle Scholar
  134. Torrent M, Pulido D, Rivas L (2012) Antimicrobial peptide action on parasites. Curr Drug Targets 13:1138–1147CrossRefPubMedPubMedCentralGoogle Scholar
  135. Tseng I-J, Sheu S-Y, Lin P-Y, Lee J-A, Ou K-L, Lee L-W (2012) Synthesis and evaluation of cantharidinimides on human cancer cells. J Exp Clin Med 4:280–283CrossRefGoogle Scholar
  136. Uçkan F, Sinan S, Savasçi S, Ergin E (2004) Determination of venom components from the endoparasitoid wasp Pimplaturionellae L. (Hymenoptera: Ichneumonidae). Ann Entomol Soc Am 97:775–780CrossRefGoogle Scholar
  137. Ulm H, Wilmes M, Shai Y, Sahl H-G (2012) Antimicrobial host defensins - specific antibiotic activities and innate defense modulation. Front Immunol 3:249CrossRefPubMedPubMedCentralGoogle Scholar
  138. Verhecken A (1989) Dyeing with kermes is still alive. J Soc Dye Colour 105:389–391CrossRefGoogle Scholar
  139. Wang GS (1989) Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 26:147–162CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarns. Stud Conserv 34:189–200Google Scholar
  141. Xu X, Liu W, Li W, Liu S (2016) Anticoagulant activity of crude extract of Holotrichia diomphalia larvae. J Ethnopharmacol 177:28–34CrossRefPubMedPubMedCentralGoogle Scholar
  142. Yan YM, Li LJ, Qin XC, Lu Q, Tu ZC, Cheng YX (2015) Compounds from the insect Blaps japanensis with COX-1 and COX-2 inhibitory activities. Bioorg Med Chem Lett 25:2469–2472CrossRefPubMedPubMedCentralGoogle Scholar
  143. Yavuz B, Zeki J, Taylor J, Harrington K, Coburn JM, Ikegaki N, Kalpan DL, Chiu B (2019) Silk reservoirs for local delivery of cisplatin for neuroblastoma treatment: In Vitro and In Vivo evaluations. J Pharam Sci 108:2748–2755CrossRefGoogle Scholar
  144. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98:5807–5822CrossRefPubMedPubMedCentralGoogle Scholar
  145. Yin WP, Zhao CJ, Liao CY, Trowell S, Rickards RW (2013) Preparative isolation of novel antimicrobial compounds from Pergidae sp. by reversed-phase high-performance liquid chromatography. Chem Nat Compd 49:41–45CrossRefGoogle Scholar
  146. Zarchi K, Jemec GB (2012) The efficacy of maggot debridement therapy - a review of comparative clinical trials. Int Wound J 9:469–477CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zhang Z, Wang S, Diao Y, Zhang J, Lv D (2010) Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity. Lipids Health Dis 9:24CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luqman Jameel Rather
    • 1
    • 2
  • Mohammad Fawad Ansari
    • 3
  • Qing Li
    • 1
    • 2
    Email author
  1. 1.College of Textile and GarmentsSouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Chongqing Engineering Research Center for Biomaterial Fibers and Modern TextileChongqingPeople’s Republic of China
  3. 3.Department of ChemistryJamia Millia Islamia (A Central University)New DelhiIndia

Personalised recommendations