Silk: An Amazing Biomaterial for Future Medication

  • Dhiraj Kumar
  • Sadhana Shrivastava
  • Chengliang Gong
  • Sangeeta Shukla


Silk is one of the famous natural materials since ancient time due to its elegance and diverse applications. Two key proteins are hydrophilic: sericin and hydrophobic fibroin. It has unique properties like biodegradation, oxidation resistance, antibacterial and UV resistance which attract researchers. The variety of silk proteins has helped in the development of novel biomaterials and successful functioning in the treatment of various diseases. Silk proteins play an important role in the development of human tissues, skin development, regeneration of eye lenses, intervertebral disc, stem cells, nerve cells, ligament and biocompatible implants for sleep disc including anticancerous stuff. In the future, we can see more silk and its proteins based highly on advanced engineered biomaterials for the biomedical industries.


Silkworm Silk Protein Biomedical products Diseases 



Authors are indebted to Dr. D.S. Kothari Fellowship, BSR, UGC, New Delhi, India (grant No.F.4-2/2006 (BSR)/BL/17-18/0549), for the financial support.


  1. Adachi T, Tomita M, Shimizu K, Ogawa S, Yoshizato K (2006) Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase α-subunits and human collagens in posterior silk glands: production of cocoons that contained collagens with hydroxylated proline residues. J Biotechnol 126(2):205–219PubMedCrossRefGoogle Scholar
  2. Aibibu D, Hild M, Cherif C (2016) An overview of braiding structure in medical textile: fiber-based implants and tissue engineering. In: Advances in braiding technology. Woodhead Publishing, pp 171–190Google Scholar
  3. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedCrossRefGoogle Scholar
  4. Aramwit P, Sangcakul A (2007) The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem 71(10):2473–2477PubMedCrossRefGoogle Scholar
  5. Cassinelli C, Cascardo G, Morra M, Draghi L, Motta A, Catapano G (2006) Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int J Artif Organs 29(9):881PubMedGoogle Scholar
  6. Catto V, Farè S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G, Remuzzi A, Tanzi MC (2015) Small diameter electrospun silk fibroin vascular grafts: mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C 54:101–111CrossRefGoogle Scholar
  7. Chouhan D, Chakraborty B, Nandi SK, Mandal BB (2017) Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater 48:157–174PubMedCrossRefGoogle Scholar
  8. De Vos WM (2015) Microbial biofilms and the human intestinal microbiome. NPJ Biofilms Microbiomes 1:15005PubMedPubMedCentralCrossRefGoogle Scholar
  9. DeBari MK, Abbott RD (2019) Microscopic considerations for optimizing silk biomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(2):e1534PubMedCrossRefGoogle Scholar
  10. Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL, Fatahi Y, Kaplan DL (2018) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 36(1):68–91PubMedCrossRefGoogle Scholar
  11. Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106(1):101–112PubMedCrossRefGoogle Scholar
  12. Gauthier N, Mandon N, Renault S, Benedet F (2004) The Acrolepiopsis assectella silk cocoon: kairomonal function and chemical characterisation. J Insect Physiol 50(11):1065–1074Google Scholar
  13. Gulrajani ML, Arora S, Aggarwal S (1997) Degummase treatment of spun silk fabric. Indian J Fibre Textile Res 22(2):119–123Google Scholar
  14. Guziewicz NA, Massetti AJ, Perez-Ramirez BJ, Kaplan DL (2013) Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials 34(31):7766–7775PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hardy JG, Scheibel TR (2009) Silk-inspired polymers and proteins. Biochem Soc Trans 37(4):677–681PubMedCrossRefGoogle Scholar
  16. Haupt J, García-López JM, Chope K (2015) Use of a novel silk mesh for ventral midline hernioplasty in a mare. BMC Vet Res 11(1):58PubMedPubMedCentralCrossRefGoogle Scholar
  17. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393PubMedCrossRefGoogle Scholar
  18. Huby N, Vié V, Renault A, Beaufils S, Lefèvre T, Paquet-Mercier F, Pézolet M, Bêche B (2013) Native spider silk as a biological optical fiber. Appl Phys Lett 102(12):123702CrossRefGoogle Scholar
  19. Iizuka E, Hachimori A, Abe K, Sunohara M, Hiraide Y, Ueyama A, Kamo K, Fujiwara T, Nakamura F, Uno T (1983) Comparative study on the mechanical property of silk thread from cocoons of Bombyx mori L. Biorheology 20(5):459–470PubMedCrossRefGoogle Scholar
  20. Inoue S, Kanda T, Imamura M, Quan GX, Kojima K, Tanaka H, Tomita M, Hino R, Yoshizato K, Mizuno S, Tamura T (2005) A fibroin secretion-deficient silkworm mutant, Nd-sD, provides an efficient system for producing recombinant proteins. Insect Biochem Mol Biol 35(1):51–59PubMedCrossRefGoogle Scholar
  21. Janani G, Nandi SK, Mandal BB (2017) Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomater 67:167–182PubMedCrossRefGoogle Scholar
  22. Jiang J, Zhang S, Qian Z, Qin N, Song W, Sun L, Zhou Z, Shi Z, Chen L, Li X, Mao Y (2018) Protein bricks: 2D and 3D bio-nanostructures with shape and function on demand. Adv Mater 30(20):1705919CrossRefGoogle Scholar
  23. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057PubMedCrossRefGoogle Scholar
  24. Kaplan D, Adams WW, Farmer B, Viney C (eds) (1993) Silk polymers: materials science and biotechnology. American Chemical SocietyGoogle Scholar
  25. Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32PubMedCrossRefGoogle Scholar
  26. Kasoju N, Bora U (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 7(4):045004PubMedCrossRefGoogle Scholar
  27. Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL (2005) Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Biomaterials 26(21):4442–4452PubMedCrossRefGoogle Scholar
  28. Kludkiewicz B, Kodrík D, Grzelak K, Nirmala X, Sehnal F (2005) Structurally unique recombinant Kazal-type proteinase inhibitor retains activity when terminally extended and glycosylated. Protein Expr Purif 43(2):94–102PubMedCrossRefGoogle Scholar
  29. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC (2014) Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci 39(2):251–267CrossRefGoogle Scholar
  30. Liu Y, Ling S, Wang S, Chen X, Shao Z (2014) Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater Sci 2(10):1338–1342CrossRefGoogle Scholar
  31. MacIntosh AC, Kearns VR, Crawford A, Hatton PV (2008) Skeletal tissue engineering using silk biomaterials. J Tissue Eng Regen Med 2(2–3):71–80PubMedCrossRefPubMedCentralGoogle Scholar
  32. Marsh RE, Corey RB, Pauling L (1955) An investigation of the structure of silk fibroin. Biochim Biophys Acta 16:1–34PubMedCrossRefGoogle Scholar
  33. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005a) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698PubMedCrossRefGoogle Scholar
  34. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005b) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRefGoogle Scholar
  35. Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592PubMedCrossRefGoogle Scholar
  36. Mondal M (2007) The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn. A review. Caspian J Environ Sci 5(2):63–76Google Scholar
  37. Motta A, Fambri L, Migliaresi C (2002) Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Phys 203(10–11):1658–1665CrossRefGoogle Scholar
  38. Murphy AR, John PS, Kaplan DL (2008) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29(19):2829–2838PubMedPubMedCentralCrossRefGoogle Scholar
  39. Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H, Kato N (2010) Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 74(8):1534–1538PubMedCrossRefGoogle Scholar
  40. Omenetto FG, Kaplan DL (2008) A new route for silk. Nat Photonics 2:641–643CrossRefGoogle Scholar
  41. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528–531PubMedPubMedCentralCrossRefGoogle Scholar
  42. Panda N, Bissoyi A, Pramanik K, Biswas A (2015) Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties. Mater Sci Eng C 48:521–532CrossRefGoogle Scholar
  43. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. ElsevierGoogle Scholar
  44. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612PubMedCrossRefGoogle Scholar
  45. Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, Ros-Roca MA, Algueró MC, Atucha NM, Lozano-García AA, Moraleda JM, Cenis JL (2014) Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med 25(12):2731–2741PubMedCrossRefGoogle Scholar
  46. Saric M, Scheibel T (2019) Engineering of silk proteins for materials applications. Curr Opin Biotechnol 60:213–220PubMedCrossRefGoogle Scholar
  47. Seo CW, Um IC, Rico CW, Kang MY (2011) Antihyperlipidemic and body fat-lowering effects of silk proteins with different fibroin/sericin compositions in mice fed with high fat diet. J Agric Food Chem 59(8):4192–4197PubMedCrossRefGoogle Scholar
  48. Shao Z, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418(6899):741PubMedCrossRefGoogle Scholar
  49. Singh MK, Varun VK, Behera BK (2011) Cosmetotextiles: state of art. Fibers Text East Eur 19(4):27–33Google Scholar
  50. Sinohara H (1979) Glycopeptides isolated from sericin of the silkworm, Bombyx mori. Comp Biochem Physiol Part B Comp Biochem 63(1):87–91CrossRefGoogle Scholar
  51. Song C, Yang Z, Zhong M, Chen Z (2013) Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells. Neural Regen Res 8(6):506PubMedPubMedCentralGoogle Scholar
  52. Tanaka K, Inoue S, Mizuno S (1999) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the HL complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29(3):269–276PubMedCrossRefGoogle Scholar
  53. Tokutake S (1980) Isolation of the smallest component of silk protein. Biochem J 187(2):413–417PubMedPubMedCentralCrossRefGoogle Scholar
  54. Totten JD, Wongpinyochit T, Carrola J, Duarte IF, Seib FP (2019) PEGylation-dependent metabolic rewiring of macrophages with silk fibroin nanoparticles. ACS Appl Mater Interfaces 11(16):14515–14525PubMedCrossRefGoogle Scholar
  55. Tsukada M, Komoto T, Kawai T (1979) Confirmation of liquid silk sericin. Polym J 11(6):503CrossRefGoogle Scholar
  56. Vollrath F, Knight DP (2001) The liquid crystalline spinning of spider silk. Nature 410(6828):541PubMedCrossRefGoogle Scholar
  57. Vollrath F, Porter D (2006) Spider silk as a model biomaterial. Appl Phys A 82(2):205–212CrossRefGoogle Scholar
  58. Vootla SK, Su CC, Masanakatti SI (2015) Self-assembled nanoparticles prepared from Tasar Antherea mylitta silk sericin. In: Biomedical applications of natural proteins. Springer, New Delhi, pp 65–77CrossRefGoogle Scholar
  59. Wang X, Zhang X, Castellot J, Herman I, Iafrati M, Kaplan DL (2008) Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 29(7):894–903PubMedCrossRefGoogle Scholar
  60. Wongpanit P, Pornsunthorntawee O, Rujiravanit R (2012) Silk fiber composites. Natural polymers: composites. R Soc Chem, Cambridge, pp 219–222CrossRefGoogle Scholar
  61. Wongpinyochit T, Uhlmann P, Urquhart AJ, Seib FP (2015) PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules 16(11):3712–3722PubMedCrossRefGoogle Scholar
  62. Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S (2012) Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater 8(6):2185–2192PubMedCrossRefGoogle Scholar
  63. Yin Z, Wu F, Xing T, Yadavalli VK, Kundu SC, Lu S (2017) A silk fibroin hydrogel with reversible sol-gel transition. RSC Adv 7(39):24085–24096CrossRefGoogle Scholar
  64. Yukuhiro K, Kanda T, Tamura T (1997) Preferential codon usage and two types of repetitive motifs in the fibroin gene of the Chinese oak silkworm, Antheraea pernyi. Insect Mol Biol 6(1):89–95Google Scholar
  65. Zhang YQ (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol Adv 20(2):91–100PubMedCrossRefGoogle Scholar
  66. Zhao JG, Zhang YQ (2015) Inhibition of the flavonoid extract from silkworm cocoons on DMBA/UVB-induced skin damage and tumor promotion in BALB/c mice. Toxicol Res 4(4):1016–1024CrossRefGoogle Scholar
  67. Zhao HP, Feng XQ, Yu SW, Cui WZ, Zou FZ (2005) Mechanical properties of silkworm cocoons. Polymer 46(21):9192–9201CrossRefGoogle Scholar
  68. Zhao HP, Feng XQ, Cui WZ, Zou FZ (2007) Mechanical properties of silkworm cocoon pelades. Eng Fract Mech 74(12):1953–1962CrossRefGoogle Scholar
  69. Zhou CZ, Confalonieri F, Esnault C, Zivanovic Y, Jacquet M, Janin J, Perasso R, Li ZG, Duguet M (2003) The 62-kb upstream region of Bombyx mori fibroin heavy chain gene is clustered of repetitive elements and candidate matrix association regions. Gene 312:189–195PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dhiraj Kumar
    • 1
  • Sadhana Shrivastava
    • 1
  • Chengliang Gong
    • 2
  • Sangeeta Shukla
    • 1
  1. 1.UNESCO Satellite Centre for Trace Element Research, School of Studies in ZoologyJiwaji UniversityGwaliorIndia
  2. 2.School of Biology and Basic Medical ScienceSoochow UniversitySuzhouChina

Personalised recommendations