Enriching Wikidata with Cultural Heritage Data from the COURAGE Project

  • Ghazal FarajEmail author
  • András Micsik
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1057)


Creating links manually between large datasets becomes an extremely tedious task. Although the linked data production is growing massively, the interconnecting needs improvement. This paper presents our work regarding detecting and extending links between Wikidata and COURAGE entities with respect to cultural heritage data. The COURAGE project explored the methods for cultural opposition in the socialist era (cc. 1950–1990), highlighting the variety of alternative cultural scenes that flourished in Eastern Europe before 1989. We describe our methods and results in discovering common entities in the two datasets, and our solution for automating this task. Furthermore, it is shown how it was possible to enrich the data in Wikidata and to establish new, bi-directional connections between COURAGE and Wikidata. Hence, the audience of both databases will have a more complete view of the matched entities.


Linked data Cultural heritage Wikidata Link discovery Link disambiguation 



The project has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).


  1. 1.
  2. 2.
    Apor, B., Apor, P., Horváth, S. (eds.): The Handbook of COURAGE, Budapest (2018).
  3. 3.
    Micsik, A.: Courage registry - open dataset 1.1, July 2019.
  4. 4.
    Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to the Linked Data Web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). Scholar
  5. 5.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10) (2014).
  6. 6.
  7. 7.
  8. 8.
    Why data partners should link their vocabulary to Wikidata: a new case study. Europeana pro page.
  9. 9.
    Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer, Cham (2018). Scholar
  10. 10.
    Allison-Cassin, S., Scott, D.: Wikidata: a platform for your library’s linked open data. Code4Lib 40 (2018)Google Scholar
  11. 11.
    Nentwig, M., Hartung, M., Cyrille, A., Ngomo, N., Rahm E.: A survey of current link discovery frameworks. Semant. Web J. 2(224) (2017).
  12. 12.
    Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery without losing recall. In: 14th International Workshop on the Web and Databases, WebDB, Athens (2011)Google Scholar
  13. 13.
    Ngomo, A.C.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: IJCAI, pp. 2312–2317 (2011).
  14. 14.
    Nikolov, A., Uren, V., Motta, E.: KnoFuss: a comprehensive architecture for knowledge fusion. In: Proceedings of the 4th International Conference on Knowledge Capture, pp. 185–186. ACM (2007)Google Scholar
  15. 15.
  16. 16.
    Hickey, T.B., Toves, J.A.: Managing ambiguity in VIAF. D-Lib Mag. 20(7/8).
  17. 17.
    Larson, R.R., Janakiraman, K.: Connecting archival collections: the social networks and archival context project. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL 2011. LNCS, vol. 6966, pp. 3–14. Springer, Heidelberg (2011). Scholar
  18. 18.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.SZTAKI DSDBudapestHungary

Personalised recommendations