Advertisement

Short Walk Adventures

  • Armin Straub
  • Wadim ZudilinEmail author
Conference paper
  • 33 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 313)

Abstract

We review recent development of short uniform random walks, with a focus on its connection to (zeta) Mahler measures and modular parametrisation of the density functions. Furthermore, we extend available ‘probabilistic’ techniques to cover a variation of random walks and reduce some three-variable Mahler measures, which are conjectured to evaluate in terms of L-values of modular forms, to hypergeometric form.

Keywords

Uniform random walk Mahler measure Modular function Modular form L-value Arithmetic differential equation Hypergeometric function 

Notes

Acknowledgements

We thank H. Cohen for supplying us with the numerical observation (10) whose origin remains completely mysterious to us. We also thank the referee for their valuable feedback.

Both authors acknowledge support of the Max Planck Society during their stays at the Max Planck Institute for Mathematics (Bonn, Germany) in the years 2015–2017. The second author is partially supported by Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. no. 14.641.31.0001.

References

  1. 1.
    Adamchik, V.S.: Integral and series representations for Catalan’s constant. Unpublished note. http://www.cs.cmu.edu/~adamchik/articles/catalan.htm
  2. 2.
    Ahlgren, S., Berndt, B.C., Yee, A.Y., Zaharescu, A.: Integrals of Eisenstein series and derivatives of \(L\)-functions. Int. Math. Res. Not. 2002(32), 1723–1738 (2002)Google Scholar
  3. 3.
    Akatsuka, H.: Zeta Mahler measures. J. Number Theory 129(11), 2713–2734 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Almkvist, G., van Straten, D., Zudilin, W.: Generalizations of Clausen’s formula and algebraic transformations of Calabi–Yau differential equations. Proc. Edinb. Math. Soc. 54(2), 273–295 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bailey, D.H., Borwein, J.M.: Hand-to-hand combat with multi-thousand-digit integrals. J. Comput. Sci. 3, 77–86 (2012)CrossRefGoogle Scholar
  6. 6.
    Bailey, D.H., Borwein, J.M., Broadhurst, D.J., Glasser, M.L.: Elliptic integral evaluations of Bessel moments and applications. J. Phys. A 41(20), 5203–5231 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Berndt, B.C., Zaharescu, A.: An integral of Dedekind eta-functions in Ramanujan’s lost notebook. J. Reine Angew. Math. 551, 33–39 (2002)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Borwein, J.M.: A short walk can be beautiful. J. Humanist. Math. 6(1), 86–109 (2016)CrossRefGoogle Scholar
  9. 9.
    Borwein, J.M., Nuyens, D., Straub, A., Wan, J.: Some arithmetic properties of short random walk integrals. Ramanujan J. 26(1), 109–132 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Borwein, J.M., Straub, A., Wan, J., Zudilin, W.: Densities of short uniform random walks, with an appendix by D. Zagier. Can. J. Math. 64(5), 961–990 (2012)CrossRefGoogle Scholar
  11. 11.
    Borwein, J.M., Straub, A., Wan, J.: Three-step and four-step random walk integrals. Exp. Math. 22(1), 1–14 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boyd, D.: Mahler’s measure and special values of \(L\)-functions. Exp. Math. 7(1), 37–82 (1998)Google Scholar
  13. 13.
    Boyd, D., Lind, D., Rodriguez-Villegas, F., Deninger, C.: The many aspects of Mahler’s measure. Final report of the Banff workshop 03w5035 (26 April–1 May 2003). http://www.birs.ca/workshops/2003/03w5035/report03w5035.pdf
  14. 14.
    Broadhurst, D.: Feynman integrals, \(L\)-series and Kloosterman moments. Commun. Number Theory Phys. 10(3), 527–569 (2016)Google Scholar
  15. 15.
    Chan, H.H., Wan, J., Zudilin, W.: Legendre polynomials and Ramanujan-type series for \(1/\pi \). Isr. J. Math. 194(1), 183–207 (2013)Google Scholar
  16. 16.
    Cohen, H.: Personal communication (23 March 2018)Google Scholar
  17. 17.
    Duke, W., Imamo\(\bar{\rm {g}}\)lu, Ö.: On a formula of Bloch. Funct. Approx. 37(1), 109–117 (2007)Google Scholar
  18. 18.
    Guillera, J.: A family of Ramanujan-Orr formulas for \(1/\pi \). Integral Transforms Spec. Funct. 26(7), 531–538 (2015)Google Scholar
  19. 19.
    Paşol, V., Zudilin, W.: A study of elliptic gamma function and allies. Res. Math. Sci. 5(4), Art. 39, p 11 (2018)Google Scholar
  20. 20.
    Rogers, M.D.: A study of inverse trigonometric integrals associated with three-variable Mahler measures, and some related identities. J. Number Theory 121, 265–304 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rogers, M.D., Straub, A.: A solution of Sun’s \$520 challenge concerning \(520/\pi \). Int. J. Number Theory 9, 1273–1288 (2013)Google Scholar
  22. 22.
    Rogers, M.D., Zudilin, W.: On the Mahler measure of \(1+X+1/X+Y+1/Y\). Int. Math. Res. Not. 2014(9), 2305–2326 (2014)Google Scholar
  23. 23.
    Shinder, E., Vlasenko, M.: Linear Mahler measures and double \(L\)-values of modular forms. J. Number Theory 142, 149–182 (2014)Google Scholar
  24. 24.
    Smyth, C.J.: On measures of polynomials in several variables. Bull. Aust. Math. Soc. 23, 49–63 (1981)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sun, Z.-W.: List of conjectural series for powers of \(\pi \) and other constants (2014). arXiv:1102.5649v47 [math.CA]
  26. 26.
    Takloo-Bighash, R.: A remark on a paper of S. Ahlgren, B.C. Berndt, A.J. Yee, and A. Zaharescu: “Integrals of Eisenstein series and derivatives of \(L\)-functions” [2]. Int. J. Number Theory 2(1), 111–114 (2006)Google Scholar
  27. 27.
    Wan, J.G.: Personal communication (26 July 2011)Google Scholar
  28. 28.
    Wan, J.G.: Series for \(1/\pi \) using Legendre’s relation. Integral Transforms Spec. Funct. 25(1), 1–14 (2014)Google Scholar
  29. 29.
    Wan, J.G., Zudilin, W.: Generating functions of Legendre polynomials: a tribute to Fred Brafman. J. Approx. Theory 164, 488–503 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhou, Y.: On Borwein’s conjectures for planar uniform random walks. J Austral. Math. Soc. 107(3), 392–411 (2019)Google Scholar
  31. 31.
    Zhou, Y.: Wick rotations, Eichler integrals, and multi-loop Feynman diagrams. Commun. Number Theory Phys. 12(1), 127–192 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zudilin, W.: Period(d)ness of \(L\)-values. In: Borwein, J.M., et al. (eds.) Number Theory and Related Fields, In Memory of Alf van der Poorten. Springer Proceedings in Mathematics and Statistics, vol. 43, pp. 381–395. Springer, New York (2013)Google Scholar
  33. 33.
    Zudilin, W.: A generating function of the squares of Legendre polynomials. Bull. Aust. Math. Soc. 89(1), 125–131 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zudilin, W.: Hypergeometric heritage of W.N. Bailey. With an appendix: Bailey’s letters to F. Dyson. Not. Intern. Congr. Chin. Mathematicians 7(2), 32–46 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of South AlabamaMobileUSA
  2. 2.Department of Mathematics, IMAPPRadboud UniversityNijmegenNetherlands
  3. 3.School of Mathematical and Physical SciencesThe University of NewcastleCallaghanAustralia
  4. 4.Laboratory of Mirror Symmetry and Automorphic FormsNational Research University Higher School of EconomicsMoscowRussia

Personalised recommendations