Improved Bounds on Brun’s Constant

  • Dave Platt
  • Tim TrudgianEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 313)


Brun’s constant is \(B=\sum _{p \in P_{2}} p^{-1} + (p+2)^{-1}\), where the summation is over all twin primes. We improve the unconditional bounds on Brun’s constant to \(1.840503< B < 2.288490\), which are about 13% tighter.



We wish to thank Richard Brent, Tomás Oliveira e Silva, Carl Pomerance, Olivier Ramaré and the anonymous referee for their comments and contributions.


  1. 1.
    Berkane, D., Bordellès, O., Ramaré, O.: Explicit upper bounds for the remainder term in the divisor problem. Math. Comput. 81(278), 1025–1051 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borwein, J., et al.: Organic Mathematics: Proceedings of the Organic Mathematics Workshop, December 12–14, 1995, Simon Fraser University, Burnaby. British Columbia. AMS, Providence (1997)zbMATHGoogle Scholar
  3. 3.
    Brent, R.P.: Tables concerning irregularities in the distribution of primes and twin primes up to \(10^{11}\). Math. Comput. 30(134), 379 (1976)Google Scholar
  4. 4.
    Brun, V.: La série \(1/5 + 1/7 + 1/11 + 1/13 + 1/17\) [etc.] où les dénominateurs sont nombres premiers jumeaux est convergente ou finie. Bull. Sci. Math. 43, 124–128 (1919)Google Scholar
  5. 5.
    Crandall., Pomerance.: Prime Numbers: A Computational Perspective, 2nd edn. Springer, New York (2005)Google Scholar
  6. 6.
    Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Klyve, D.: Explicit bounds on twin primes and Brun’s constant. Ph.D thesis, Dartmouth College (2007)Google Scholar
  8. 8.
    Molin, P.: Intégration numérique et calculs de fonctions L. Ph.D thesis, Institut de Mathématiques de Bordeaux (2010)Google Scholar
  9. 9.
    Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20, 119–134 (1973)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Montgomery, H.L., Vaughan, R.C.: Hilbert’s inequality. J. Lond. Math. Soc. 2(8), 73–82 (1974)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nicely, T.R.: Prime constellations research project (2010).
  12. 12.
    Oliveira e Silva, T.: Tables of values of pi(x) and of pi2(x) (2015).
  13. 13.
    Preissmann, E.: Sur une inégalité de Montgomery et Vaughan. Enseign. Math. 30, 95–113 (1984)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Riesel, H., Vaughan, R.C.: On sums of primes. Ark. Mat. 21(1–2), 45–74 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinos J. Math. 6, 64–94 (1962)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sebah, P., Gourdon, X.: Introduction to twin primes and Brun’s constant computation (2002).
  17. 17.
    Siebert, H.: Montgomery’s weighted sieve for dimension two. Monatsh. Math. 82(4), 327–336 (1976)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wrench Jr., J.W.: Evaluation of Artin’s constant and the twin-prime constant. Math. Comput. 15(76), 396–398 (1961)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of MathematicsUniversity of Bristol, University WalkBristolUK
  2. 2.School of SciencesUNSW CanberraCanberraAustralia

Personalised recommendations