Advertisement

Pressure-Less Processing of Ceramics with Deliberate Elongated Grain Orientation and Size

  • Hortense Le FerrandEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Ceramics with heterogeneous microstructures have the potential to exhibit local variations in properties and unusual combinations of those, just like highly mineralized biomaterials do. However, to date, the microstructures achieved in technical and structural ceramics cannot rival the diversity and complexity of those found in biomaterials due to the lack of adapted processing methods. Recent research, however, demonstrated that local hardness and elastic modulus can be realized in alumina ceramics by controlling the orientation of the grains in periodically varying structures. This deliberate tuning of the grain orientation resulted from the magnetically-driven alignment of anisotropic template particles in the initial liquid suspension. During the sintering at high temperature, the template particles grew as anisotropic grains with the orientation set by the magnetic field. To expand the design freedom of such ceramics in terms of microstructure and properties, this paper aims at tuning the grain size, grain orientation, and final porosity of sintered alumina. The methodology to build multilayered ceramics using varying template particles sizes is described and examples of the microstructures obtained are provided. This work contributes to pushing forward the field of bioinspired ceramics that would hopefully give rise to structural ceramics with unusual combinations of local properties.

Keywords

Microstructure Ceramic Grain growth Magnetic orientation 

Notes

Acknowledgements

The author acknowledges financial support from Nanyang Technological University with the Start-Up grant M4082382.050).

References

  1. 1.
    Naleway SE, Porter MM, McKittrick J, Meyers MA (2015) Adv Mater 27:5455CrossRefGoogle Scholar
  2. 2.
    Le Ferrand H, Bouville F, Niebel TP, Studart AR (2015) Nat Mater 14:1172CrossRefGoogle Scholar
  3. 3.
    Le Ferrand H (2019) Compos Struct 224:111105CrossRefGoogle Scholar
  4. 4.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Nat Mater 14:23CrossRefGoogle Scholar
  5. 5.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Science (80-.) 322:1516–80CrossRefGoogle Scholar
  6. 6.
    Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, DiMasi E, Kisailus D (2012) Science (80-.) 336:1275CrossRefGoogle Scholar
  7. 7.
    Amini S, Masic A, Bertinetti L, Teguh JS, Herrin JS, Zhu X, Su H, Miserez A (2014) Nat Commun 5:1CrossRefGoogle Scholar
  8. 8.
    Studart AR (2012) Adv Mater 24:5024CrossRefGoogle Scholar
  9. 9.
    Barthelat F, Mirkhalaf M, Soc JR (2013) Interface 10Google Scholar
  10. 10.
    Nelson I, Naleway SE (2019) Integr Med Res 8:2372Google Scholar
  11. 11.
    Kokkinis D, Schaffner M, Studart AR (2015) Nat Commun 45:333Google Scholar
  12. 12.
    Le Ferrand H (2019) J Mater Res 34:169CrossRefGoogle Scholar
  13. 13.
    Le Ferrand H, Bouville F (2019) J Am Ceram Soc 1Google Scholar
  14. 14.
    Le Ferrand H, Bouville F, Studart AR (2019) Soft Matter 15:3886CrossRefGoogle Scholar
  15. 15.
    Seabaugh M, Messing GL (1997) J Am 88:1181Google Scholar
  16. 16.
    Pavlacka RJ, Messing GL (2010) J Eur Ceram Soc 30:2917CrossRefGoogle Scholar
  17. 17.
    Habelitz S, Carl G, Russel C, Thiel S, Gerth U, Schnapp J-D, Jordanov A, Knake H (1997) J Non Cryst Solids 220:291CrossRefGoogle Scholar
  18. 18.
    Suzuki TS, Sakka Y (2005) Scr Mater 52:583CrossRefGoogle Scholar
  19. 19.
    Palmero P (2015) Nanomaterials 5:656CrossRefGoogle Scholar
  20. 20.
    Bonderer LJ, Studart AR, Gauckler LJ (2008) Science (80-.) 319:1069Google Scholar
  21. 21.
    Suvaci E, Oh KS, Messing GL (2001) Acta Mater 49:2075CrossRefGoogle Scholar
  22. 22.
    Erb RM, Segmehl J, Charilaou M, Löffler JF, Studart AR (2012) Soft Matter 8:7604CrossRefGoogle Scholar
  23. 23.
    Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Science (80-.) 335:199Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace Engineering, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations