Advertisement

Neurocritical Care Ultrasound

  • Faheem G. Sheriff
  • Sakina Sheriff
  • Shyam S. Rao
  • David Y. Chung
Chapter
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Ultrasound has revolutionized the practice of medicine and critical care. The use of bedside ultrasound and transcranial Doppler has multiple important applications in decision-making in neurocritical care, some of which are still being discovered. The basic principles, however, must be well-understood; in addition, sound operator training is needed. Optimal use of these modalities requires understanding dynamic changes in systemic and cerebrovascular blood flow physiology and interpreting them in the context of the patient’s clinical condition and ongoing therapies. This chapter provides a broad framework for novices and also addresses the latest research pertaining to critical care ultrasound in subarachnoid hemorrhage, traumatic brain injury, ischemic stroke, intracranial hemorrhage, brain death, and bedside procedures. Original clinical cases with illustrations and images are used to highlight key concepts.

Keywords

Bedside ultrasound Transcranial Doppler Neurocritical care Subarachnoid hemorrhage Traumatic brain injury Ischemic stroke Intracranial hemorrhage Brain death Bedside procedures 

References

  1. 1.
    Shampo MA, Kyle RA. Karl Theodore Dussik—Pioneer in ultrasound. Mayo Clin Proc. 1995;70(12):1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Ochoa-Pérez L, Cardozo-Ocampo A. Ultrasound applications in the central nervous system for neuroanaesthesia and neurocritical care. Colomb J Anesthesiol. 2015;43(4):314–20.Google Scholar
  3. 3.
    Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res. 2018;96(4):720–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    McGirt MJ, Blessing RP, Goldstein LB. Transcranial Doppler monitoring and clinical decision-making after subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2003;12(2):88–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Akif TM. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem. 2012;123:39–51.CrossRefGoogle Scholar
  7. 7.
    Viski S, Olah L. Use of transcranial Doppler in intensive care unit. J Crit Care Med [Internet]. 2017 [Cited 28 Mar 2018];3(3). Available from: http://www.degruyter.com/view/j/jccm.2017.3.issue-3/jccm-2017-0021/jccm-2017-0021.xml
  8. 8.
    Alexandrov AV, Sloan MA, Wong Lawrence KS, Colleen D, Razumovsky Alexander Y, Koroshetz Walter J, et al. Practice standards for transcranial Doppler ultrasound: part I—Test performance. J Neuroimaging. 2007;17(1):11–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, et al. Assessment: transcranial Doppler ultrasonography report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 2004;62(9):1468–81.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg. 1984;60(1):37–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Sloan MA, Zagardo MT, Wozniak MA, Macko RF, Aldrich EF, Simard JM, et al. Sensitivity and specificity of flow velocity ratios for the diagnosis of vasospasm after subarachnoid hemorrhage: preliminary report. New Trends Cereb Hemodynamics Neurosonology. 1997:221–7.Google Scholar
  12. 12.
    Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33(1):72–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Sviri GE, Lewis DH, Correa R, Britz GW, Douville CM, Newell DW. Basilar artery vasospasm and delayed posterior circulation ischemia after aneurysmal subarachnoid hemorrhage. Stroke. 2004;35(8):1867–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, et al. Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2009;65(2):316–24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Otite F, Mink S, Tan CO, Puri A, Zamani AA, Mehregan A, et al. Impaired cerebral autoregulation is associated with vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage. Stroke. 2014;45(3):677.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Santos GA, Petersen N, Zamani AA, Du R, LaRose S, Monk A, et al. Pathophysiologic differences in cerebral autoregulation after subarachnoid hemorrhage. Neurology. 2016;86(21):1950–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:1–13.CrossRefGoogle Scholar
  18. 18.
    Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage∗. Crit Care Med. 2007;35(8):1844–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):3–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Feissel M, Michard F, Faller J-P, Teboul J-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme J-L, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Jue J, Chung W, Schiller NB. Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr. 1992;5(6):613–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Miller A, Mandeville J. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract. 2016;3(2):G1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mandeville JC, Colebourn CL. Can transthoracic echocardiography be used to predict fluid responsiveness in the critically ill patient? A systematic review. Crit Care Res Pract. 2012;2012:9.Google Scholar
  25. 25.
    Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure∗: the BLUE Protocol. Chest. 2008;134(1):117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Williamson CA, Co I, Pandey AS, Gregory Thompson B, Rajajee V. Accuracy of daily lung ultrasound for the detection of pulmonary edema following subarachnoid hemorrhage. Neurocrit Care. 2016;24(2):189–96.PubMedCrossRefGoogle Scholar
  27. 27.
    Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium. J Am Coll Cardiol. 1994;24(3):636–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Dujardin KS, McCully RB, Wijdicks EF, Tazelaar HD, Seward JB, McGregor CG, et al. Myocardial dysfunction associated with brain death: clinical, echocardiographic, and pathologic features. J Heart Lung Transplant. 2001;20(3):350–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bulsara KR, McGirt MJ, Liao L, Villavicencio AT, Borel C, Alexander MJ, et al. Use of the peak troponin value to differentiate myocardial infarction from reversible neurogenic left ventricular dysfunction associated with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(3):524–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Vignon P, Dugard A, Abraham J, Belcour D, Gondran G, Pepino F, et al. Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med. 2007;33(10):1795–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen M, Sloth E, Larsen K, Schmidt M. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004;21:700–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cinotti R, Piriou N, Launey Y, Le Tourneau T, Lamer M, Delater A, et al. Speckle tracking analysis allows sensitive detection of stress cardiomyopathy in severe aneurysmal subarachnoid hemorrhage patients. Intensive Care Med. 2016;42(2):173–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Brooks FA, Ughwanogho U, Henderson GV, Black-Schaffer R, Sorond FA, Tan CO. The link between cerebrovascular hemodynamics and rehabilitation outcomes after aneurysmal subarachnoid hemorrhage. Am J Phys Med Rehabil. 2018;97(5):309–15.CrossRefGoogle Scholar
  35. 35.
    Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. Schreiber M, editor. PLOS Med. 2017;14(7):e1002356.Google Scholar
  36. 36.
    Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12(3):R67.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tsung JW, Blaivas M, Cooper A, Levick NR. A rapid noninvasive method of detecting elevated intracranial pressure using bedside ocular ultrasound: application to 3 cases of head trauma in the pediatric emergency department. Pediatr Emerg Care. 2005;21(2):94–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med. 2007;49(4):508–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRefGoogle Scholar
  41. 41.
    de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, et al. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87(1):9–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of transcranial Doppler in patients with severe traumatic brain injuries. J Neurotrauma. 2017;34(1):121–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Chan K, Dearden N, Miller J. The significance of posttraumatic increase in cerebral blood flow velocity: a transcranial Doppler ultrasound study. Neurosurgery. 1992;30(5):697–700.PubMedGoogle Scholar
  45. 45.
    Weber M, Grolimund P, Seiler RW. Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery. 1990;27(1):106–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Mattioli C, Beretta L, Gerevini S, Veglia F, Citerio G, Cormio M, et al. Traumatic subarachnoid hemorrhage on the computerized tomography scan obtained at admission: a multicenter assessment of the accuracy of diagnosis and the potential impact on patient outcome. J Neurosurg. 2003;98(1):37–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg. 2005;103(5):812–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, et al. Wartime traumatic cerebral vasospasmrecent review of combat casualties. Neurosurgery. 2006;59(6):1215–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Ract C, Le Moigno S, Bruder N, Vigué B. Transcranial Doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med. 2007;33(4):645–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Jägersberg M, Schaller C, Boström J, Schatlo B, Kotowski M, Thees C. Simultaneous bedside assessment of global cerebral blood flow and effective cerebral perfusion pressure in patients with intracranial hypertension. Neurocrit Care. 2010;12(2):225–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Barlinn K, Alexandrov AV. Vascular imaging in stroke: comparative analysis. Neurotherapeutics. 2011;8(3):340–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    NASCET collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–53.CrossRefGoogle Scholar
  53. 53.
    Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med. 2001;344(12):898–906.PubMedCrossRefGoogle Scholar
  54. 54.
    Reinhard M, Schwarzer G, Briel M, Altamura C, Palazzo P, King A, et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology. 2014;83(16):1424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Feldmann E, Wilterdink JL, Kosinski A, Lynn M, Chimowitz MI, Sarafin J, et al. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68(24):2099.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Alexandrov AV, Demchuk AM, Wein TH, Grotta JC. Yield of transcranial Doppler in acute cerebral ischemia. Stroke. 1999;30(8):1604.PubMedCrossRefGoogle Scholar
  57. 57.
    Tsivgoulis G, Sharma VK, Hoover SL, Lao AY, Ardelt AA, Malkoff MD, et al. Applications and advantages of power motion-mode Doppler in acute posterior circulation cerebral ischemia. Stroke. 2008;39(4):1197–204.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao L, Barlinn K, Sharma VK, Tsivgoulis G, Cava LF, Vasdekis SN, et al. Velocity criteria for intracranial stenosis revisited. Stroke. 2011;42(12):3429.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Spencer MP. Hemodynamics of arterial stenosis. In: Spencer MP, editor. Ultrasonic diagnosis of cerebrovascular disease: Doppler techniques and pulse echo imaging [Internet]. Dordrecht: Springer Netherlands; 1987. p. 117–46.  https://doi.org/10.1007/978-94-009-4305-6_9.CrossRefGoogle Scholar
  60. 60.
    Wilterdink JL, Feldmann E, Furie KL, Bragoni M, Benavides JG. Transcranial Doppler ultrasound battery reliably identifies severe internal carotid artery stenosis. Stroke. 1997;28(1):133.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Demchuk AM, Burgin WS, Christou I, Felberg RA, Barber PA, Hill MD, et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001;32(1):89.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sloan MA, Alexandrov AV, Tegeler CH. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Neurology. 2004;62(9):1468–81.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    González-Alujas T, Evangelista A, Santamarina E, Rubiera M, Gómez-Bosch Z, Rodríguez-Palomares JF, et al. Diagnosis and quantification of patent foramen ovale. Which is the reference technique? Simultaneous study with transcranial Doppler, transthoracic and transesophageal echocardiography. Rev Esp Cardiol Engl Ed. 2011;64(2):133–9.CrossRefGoogle Scholar
  64. 64.
    Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R, et al. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt. JACC Cardiovasc Imaging. 2014;7(3):236–50.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Droste DW, Lakemeier S, Wichter T, Stypmann J, Dittrich R, Ritter M, et al. Optimizing the technique of contrast transcranial Doppler ultrasound in the detection of right-to-left shunts. Stroke. 2002;33(9):2211.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Jayasooriya G, Thapar A, Shalhoub J, Davies AH. Silent cerebral events in asymptomatic carotid stenosis. J Vasc Surg. 2011;54(1):227–36.PubMedCrossRefGoogle Scholar
  67. 67.
    Gao S, Wong KS, Hansberg T, Lam WWM, Droste DW, Ringelstein EB. Microembolic signal predicts recurrent cerebral ischemic events in acute stroke patients with middle cerebral artery stenosis. Stroke. 2004;35(12):2832–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Sliwka U, Lingnau A, Stohlmann W-D, Schmidt P, Mull M, Diehl RR, et al. Prevalence and time course of microembolic signals in patients with acute stroke: a prospective study. Stroke. 1997;28(2):358–63.PubMedCrossRefGoogle Scholar
  69. 69.
    Demir S, Ozdag MF, Kendirli MT, Togrol RE. What do anticoagulants say about microemboli? J Stroke Cerebrovasc Dis. 2015;24(11):2474–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Markus HS. Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation. 2005;111(17):2233–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Chen S-P, Fuh J-L, Chang F-C, Lirng J-F, Shia B-C, Wang S-J. Transcranial color Doppler study for reversible cerebral vasoconstriction syndromes. Ann Neurol. 2008;63(6):751–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Razumovsky AY, Wityk RJ, Geocadin RG, Bhardwaj A, Ulatowski JA. Cerebral vasculitis: diagnosis and follow-up with transcranial Doppler ultrasonography. J Neuroimaging. 2001;11(3):333–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Ritter MA, Dziewas R, Papke K, Lüdemann P. Follow-up examinations by transcranial Doppler ultrasound in primary angiitis of the central nervous system. Cerebrovasc Dis. 2002;14(2):139–42.PubMedCrossRefGoogle Scholar
  74. 74.
    Paliwal PR, Teoh HL, Sharma VK. Association between reversible cerebral vasoconstriction syndrome and thrombotic thrombocytopenic purpura. J Neurol Sci. 2014;338(1):223–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Müller M, Merkelbach S, Hermes M, Schimrigk K. Transcranial Doppler sonography at the early stage of acute central nervous system infections in adults. Ultrasound Med Biol. 1996;22(2):173–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Tai M-LS, Sharma VK. Role of transcranial Doppler in the evaluation of vasculopathy in tuberculous meningitis. PLoS One. 2016;11(10):e0164266.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Platt OS. Preventing stroke in sickle cell anemia. N Engl J Med. 2005;353(26):2743–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353(26):2769–78.Google Scholar
  80. 80.
    Agnelli G, Verso M. Epidemiology of cerebral vein and sinus thrombosis. Front Neurol Neurosci. 2008;23:16–22.PubMedGoogle Scholar
  81. 81.
    Valdueza JM, Schmierer K, Mehraein S, Einhaüpl KM. Assessment of normal flow velocity in basal cerebral veins: a transcranial Doppler ultrasound study. Stroke. 1996;27(7):1221–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Valdueza JM, Hoffmann O, Doepp F, Lehmann R, Einhäupl KM. Venous Doppler ultrasound assessment of the parasellar region. Cerebrovasc Dis. 1998;8(2):113–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Doepp F, Hoffmann O, Lehmann R, Valdueza JM. Doppler assessment of the inferior petrosal sinus using the suboccipital approach. Eur J Ultrasound. 1997;5(1001):23.Google Scholar
  84. 84.
    Valdueza JM, Hoffmann O, Weih M, Mehraein S, Einhäupl KM. Monitoring of venous hemodynamics in patients with cerebral venous thrombosis by transcranial Doppler ultrasound. Arch Neurol. 1999;56(2):229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Castro P, Serrador JM, Rocha I, Sorond F, Azevedo E. Efficacy of cerebral autoregulation in early ischemic stroke predicts smaller infarcts and better outcome. Front Neurol [Internet]. 2017 [Cited 28 Mar 2018];8. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2017.00113/full.
  86. 86.
    Castro P, Azevedo E, Serrador J, Rocha I, Sorond F. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: link to cerebral autoregulation. J Neurol Sci. 2017;372:256–61.PubMedCrossRefGoogle Scholar
  87. 87.
    Carson SC, Hertzberg BS, Bowie JD, Burger PC. Value of sonography in the diagnosis of intracranial hemorrhage and periventricular leukomalacia: a postmortem study of 35 cases. Am J Neuroradiol. 1990;11(4):677–83.PubMedGoogle Scholar
  88. 88.
    Huisman TAGM. Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur Radiol. 2005;15(3):434–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med. 1986;314(15):953–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Sung-Chun T, Sheng-Jean H, Jiann-Shing J, Ping-Keung Y. Third ventricle midline shift due to spontaneous supratentorial intracerebral hemorrhage evaluated by transcranial color-coded sonography. J Ultrasound Med. 2006;25(2):203–9.CrossRefGoogle Scholar
  91. 91.
    Stolz E, Gerriets T, Fiss I, Babacan SS, Seidel G, Kaps M. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. Am J Neuroradiol. 1999;20(8):1567–71.PubMedGoogle Scholar
  92. 92.
    Klingelhöfer J, Sander D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke. 1992;23(7):962–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Ducrocq X, Braun M, Debouverie M, Junges C, Hummer M, Vespignani H. Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci. 1998;160(1):41–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Azevedo E, Teixeira J, Neves JC, Vaz R. Transcranial Doppler and brain death. Transplant Proc. 2000;32(8):2579–81.PubMedCrossRefGoogle Scholar
  95. 95.
    Hassler W, Steinmetz H, Gawlowski J. Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg. 1988;68(5):745–51.PubMedGoogle Scholar
  96. 96.
    Soldatos T, Karakitsos D, Wachtel M, Boletis J, Chatzimichail K, Papathanasiou M, et al. The value of transcranial Doppler sonography with a transorbital approach in the confirmation of cerebral circulatory arrest. Transplant Proc. 2010;42(5):1502–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Soni NJ, Franco-Sadud R, Schnobrich D, Dancel R, Tierney DM, Salame G, et al. Ultrasound guidance for lumbar puncture. Neurol Clin Pract. 2016;6(4):358–68.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Holm HH, Skjoldbye B. Interventional ultrasound. Ultrasound Med Biol. 1996;22(7):773–89.PubMedCrossRefGoogle Scholar
  99. 99.
    Horowitz R, Gossett JG, Bailitz J, Wax D, Pierce MC. The FLUSH study—Flush the line and ultrasound the heart: ultrasonographic confirmation of central femoral venous line placement. Ann Emerg Med. 2014;63(6):678–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Faheem G. Sheriff
    • 1
  • Sakina Sheriff
    • 2
  • Shyam S. Rao
    • 1
  • David Y. Chung
    • 1
  1. 1.Department of NeurologyMassachusetts General Hospital/Brigham and Women’s HospitalBostonUSA
  2. 2.Department of NeurologyBoston Children’s HospitalBostonUSA

Personalised recommendations