Advertisement

Management of Elevated Intracranial Pressure

  • Aaron M. GusdonEmail author
  • Paul A. Nyquist
  • Sarah E. Nelson
Chapter
  • 31 Downloads
Part of the Current Clinical Neurology book series (CCNEU)

Abstract

Elevations in intracranial pressure (ICP) constitute neurological emergencies, and a significant amount of time in the neurological critical care unit (NCCU) is spent diagnosing and treating increased ICP. It is pivotal to understand the signs of increased ICP, and treatment should be implemented without delay. Most institutes utilize an algorithmic-based approach for ICP management. This chapter will review the etiologies and diagnosis of increased ICP and will summarize our treatment algorithm. The available evidence for each intervention will be discussed.

Keywords

Intracranial pressure Herniation Cerebral edema Osmotherapy Craniectomy Barbiturates Steroids Hypothermia 

References

  1. 1.
    Treggiari MM, Schutz N, Yanez ND, Romand J-A. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care [Internet]. 2007;6(2):104–12. Available from: http://link.springer.com/10.1007/s12028-007-0012-1.CrossRefGoogle Scholar
  2. 2.
    Ropper AH, Samuels MA, Klein JP. Disturbances of cerebrospinal fluid, including hydrocephalus, pseudotumor cerebri, and low-pressure syndromes. In: Adams and Victor’s principles of neurology. 10th ed: McGraw Hill Education; 2014. p. 617–38.Google Scholar
  3. 3.
    Posner JB, Saper CB, Schiff ND, Plum F. Structural causes of Stupor and Coma. In: Gilman S, editor. PLUM and POSNER’S diagnosis of Stupor and Coma. 4th ed. New York; 2007. p. 88–118.Google Scholar
  4. 4.
    Burgerman RS, Wolf AL, Kelman SE, Elsner H, Mirvis S, Sestokas AK. Traumatic trochlear nerve palsy diagnosed by magnetic resonance imaging: case report and review of the literature. Neurosurgery. 1989;25(6):1978–81.CrossRefGoogle Scholar
  5. 5.
    Freeman WD. Management of intracranial pressure. Continuum (Minneap Minn) [Internet]. 2015;21(5 Neurocritical Care):1299–323. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26426232.
  6. 6.
    Posner JB, Saper CB, Schiff ND, Plum F. Examination of the comatose patient. In: PLUM and POSNER’S diagnosis of Stupor and Coma. 4th ed; 2007. p. 38–87.Google Scholar
  7. 7.
    Armstead WM. Cerebral blood flow autoregulation and dysautoregulation. Anesth Clin. 2016;34(3):465–77.CrossRefGoogle Scholar
  8. 8.
    Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab [Internet]. 2016; Available from: http://jcb.sagepub.com/content/early/2016/05/11/0271678X16648711.abstract.
  9. 9.
    Trojanowski T. How intracranial aneurysm rupture damages the brain. Interv Neuroradiol [Internet] 2008;14:9–12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3328053&tool=pmcentrez&rendertype=abstract.
  10. 10.
    Hayreh SS. Pathogenesis of optic disc edema in raised intracranial pressure. Prog Retin Eye Res [Internet]. 2016;50:108–44. Available from:  https://doi.org/10.1016/j.preteyeres.2015.10.001.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tsitsopoulos PD, Tsonidis CA, Petsas GP, Hadjiioannou PN, Njau SN, Anagnostopoulos LV. Microsurgical study of the Dorello’s canal. Skull Base Surg. 1996;6(3):181–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass. N Engl J Med [Internet]. 1986;314(15):953–8. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199308123290707.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Binder DK, Lyon R, Manley GT, Milhorat TH, Marshall LF, Marion DW. Transcranial motor evoked potential recording in a case of Kernohan’s notch syndrome: case report. Neurosurgery. 2004;54(4):999–1003.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sato M, Tanaka S, Kohama A, Fujii C. Occipital lobe infarction caused by tentorial herniation. Neurosurgery. 1986;18(3):300–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Friede RL, Roessman U. The pathogenesis of secondary midbrain hemorrhages. Neurology. 1966;16(12):1210–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zidan AH, Girvin JP. Effect on the Cushing response of different rates of expansion of a supratentorial mass. J Neurosurg [Internet]. 1978;49(1):61–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26734.CrossRefGoogle Scholar
  17. 17.
    Jaiswal S, Vij M, Mehrota A, Kumar B, Nair A, Jaiswal AK, et al. Choroid plexus tumors: a clinico-pathological and neuro-radiolgical study of 23 cases. Asian J Neurosurg. 2013;8(1):29–35.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab [Internet]. 2016;36(3):513–38. Available from: http://jcb.sagepub.com/content/36/3/513.full.CrossRefGoogle Scholar
  19. 19.
    Hu HJ, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets. J Stroke Cerebrovasc Dis [Internet]. 2017;26(12):2706–19. Available from:  https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.011.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Durward QJ, Del Maestro RF, Amacher AL, Farrar JK. The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg [Internet]. 1983;59(5):803–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6619932.CrossRefGoogle Scholar
  21. 21.
    Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. Cancer Treat Res. 2004;117:249–62.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Vajkoczy P, Menger MD. Vascular microenvironment in gliomas. J Neuro-Oncol. 2000;50(1–2):99–108.CrossRefGoogle Scholar
  23. 23.
    Stewart PA, Hayakawa K, Hayakawa E, Farrell CL, Del Maestro RF. A quantitative study of blood-brain barrier permeability ultrastructure in a new rat glioma model. Acta Neuropathol. 1985;67(1–2):96–102.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NPH, Risau W, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. 1993;72(6):835–46.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    De Vries C, Escobedo JA, Ueno H, Houck K. The fms-Like tyrosine kinase, a receptor for vascular endothelial growth factor Ferrara and Lewis T. Williams Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2876593 JSTOR is a not-for-profits. Science (80-). 1992;255(5047):989–91.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wang W, Dentler WL, Borchardt RT. VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol [Internet]. 2001;280(1):H434–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11123261.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fischer S, Wobben M, Marti HH, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 2002;63(1):70–80.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Machein MR, Plate KH. VEGF in brain tumors. J Neuro-Oncol. 2000;50(1–2):109–20.CrossRefGoogle Scholar
  29. 29.
    Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res [Internet]. 2007;29(February):395–403. Available from: http://www.ingentaconnect.com/content/maney/nres/2007/00000029/00000004/art00010.CrossRefGoogle Scholar
  30. 30.
    Skold MK, von Gertten C, Sandberg-Nordqvist AC, Mathiesen T, Holmin S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma. 2005;22(3):353–67.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kovacs Z, Ikezaki K, Samoto K, Inamura T, Fukui M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke. 1996;27(10):1865–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ziai WC, Chandolu S, Geocadin RG. Cerebral herniation associated with central venous catheter insertion: risk assessment. J Crit Care [Internet]. 2013;28(2):189–95. Available from:  https://doi.org/10.1016/j.jcrc.2012.09.013CrossRefGoogle Scholar
  33. 33.
    Bösel J, Sedar D. Respiratory support of the neurocritically ill: airway, mechanical ventilation, and management of respiratory diseases. In: Hemphill JCI, Rabinstein A, Samuels OB, editors. The practice of neurocritical care. 1st ed: Neurocritical Care Society; 2015.Google Scholar
  34. 34.
    Gabriel EJ, Ghajar J, Jagoda A, Pons PT, Scalea T, Walters BC. Guidelines for the prehospital management of TBI. J Neurotrauma. 2002;19(1):113–74.Google Scholar
  35. 35.
    Tran D, Newton E, Mount V, Lee J, Ga W, Jj P, et al. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2015;10:1–89.Google Scholar
  36. 36.
    Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, et al. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005;101(3):622–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Krieger W, Copperman J, Laxer KD. Seizures with etomidate anesthesia. Anesth Analg. 1985;64(12):1226–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hansen HC, Drenck NE. Generalised seizures after etomidate anesthesia. Anaesthesia. 1988;43(9):805–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Modica PA, Tempelhoff R, White PF. Pro- and anticonvulsant effects of anesthetics (part II). Anesth Analg. 1990;70(4):433–44.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Carney N, Totten AM, OʼReilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery [Internet]. 2017;80(6):6–15. Available from: https://academic.oup.com/neurosurgery/article-lookup/doi/10.1227/NEU.0000000000001432.CrossRefGoogle Scholar
  41. 41.
    Kelly DF, Goodale DB, Williams J, Herr DL, Chappell ET, Rosner MJ, et al. Propofol in the treatment of moderate and severe head injury: a randomized, prospective double-blinded pilot trial. J Neurosurg. 1999;90(6):1042–52.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Staykov D, Gupta R. Hemicraniectomy in malignant middle cerebral artery infarction. Stroke. 2011;42(2):513–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med [Internet]. 2014 Mar 20 [cited 2014 Jul 12];370(12):1091–100. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24645942.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med [Internet]. 2014;370(12):1091–100. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1311367.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Brophy GM, Human T, Shutter L. Emergency neurological life support : pharmacotherapy. Neurocrit Care. 2015;23:S48–68.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Shiozaki T, Taneda M, Yoshida H, Iwai A, Yoshioka T, Sugimoto T. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg. 1993;79:363–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dorfman JD, Burns JD, Green DM, DeFusco C, Agarwal S. Decompressive laparotomy for refractory intracranial hypertension after traumatic brain injury. Neurocrit Care. 2011;15(3):516–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Joseph DK, Dutton RP, Aarabi B, Scalea TM, Rotondo MF, Wiles CE, et al. Decompressive laparotomy to treat intractable intracranial hypertension after traumatic brain injury. J Trauma - Inj Infect Crit Care. 2004;57(4):687–95.CrossRefGoogle Scholar
  49. 49.
    Shah AK, Fuerst D, Sood S, Asano E, Ahn-Ewing J, Pawlak C, et al. Seizures lead to elevation of intracranial pressure in children undergoing invasive EEG monitoring. Epilepsia. 2007;48(6):1097–103.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Roh D, Claassen J. Status epilepticus. In: Lee K, editor. The NeuroICU Book. 2nd ed: McGraw-Hill Education; 2018. p. 52–79.Google Scholar
  51. 51.
    Egawa S, Hifumi T, Kawakita K, Manabe A, Nakashima R, Matsumura H, et al. Clinical characteristics of non-convulsive status epilepticus diagnosed by simplified continuous electroencephalogram monitoring at an emergency intensive care unit. Acute Med Surg [Internet]. 2017;4(1):31–7. Available from: http://doi.wiley.com/10.1002/ams2.221.CrossRefGoogle Scholar
  52. 52.
    Stocchetti N, Picetti E, Berardino M, Buki A, Chesnut RM, Fountas KN, et al. Clinical applications of intracranial pressure monitoring in traumatic brain injury: report of the Milan consensus conference. Acta Neurochir. 2014;156(8):1615–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke [Internet]. 2012 Jul [cited 2014 May 31];43(6):1711–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22556195.
  54. 54.
    Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Freeman WD. Management of intracranial pressure corresponding author. Continuum (N Y). 2015;21(5):1299–323.Google Scholar
  56. 56.
    Miller C, Tummala RP. Risk factors for hemorrhage associated with external ventricular drain placement and removal. J Neurosurg. 2017;126:289–97.PubMedCrossRefGoogle Scholar
  57. 57.
    Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–82.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mayhall CG, Archer NH, Lamb VA, Spadora AC, Baggett JW, Ward JD, et al. Ventriculostomy-related infections. N Engl J Med [Internet]. 1984;310:553–9. Available from: http://www.nejm.org/doi/abs/10.1056/NEJM199308123290707.
  59. 59.
    Citerio G, Signorini L, Bronco A, Vargiolu A, Rota M, Latronico N. External ventricular and lumbar drain device infections in icu patients: a prospective multicenter Italian study. Crit Care Med. 2015;43(8):1630–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koskinen LOD, Grayson D, Olivecrona M. The complications and the position of the Codman MicroSensor™ ICP device: an analysis of 549 patients and 650 sensors. Acta Neurochir. 2013;155(11):2141–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Aiolfi A, Benjamin E, Khor D, Inaba K, Lam L, Demetriades D. Brain trauma foundation guidelines for intracranial pressure monitoring: compliance and effect on outcome. World J Surg. 2017;41(6):1543–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang YF, Shutter LA, et al. Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care. 2014;20(1):49–53.PubMedCrossRefGoogle Scholar
  63. 63.
    Stevens RD, Shoykhet M, Cadena R. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care. 2015;23(Suppl 2):S78–82.Google Scholar
  64. 64.
    Suarez JI, Zaidat OO, Suri MF, Feen ES, Lynch G, Hickman J, et al. Length of stay and mortality in neurocritically ill patients: impact of a specialized neurocritical care team. Crit Care Med. 2004;32(11):2311–7.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Varelas PN, Conti MM, Spanaki MV, Potts E, Bradford D, Sunstrom C, et al. The impact of a neurointensivist-led team on a semiclosed neurosciences intensive care unit. Crit Care Med. 2004;32(11):2191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jeong J-H, Bang J, Jeong W, Yum K, Chang J, Hong J-H, et al. A dedicated neurological intensive care unit offers improved outcomes for patients with brain and spine injuries. J Intensive Care Med [Internet]. 2017;885066617706675. Available from: http://journals.sagepub.com/doi/10.1177/0885066617706675%0A, http://www.ncbi.nlm.nih.gov/pubmed/28460590.
  67. 67.
    Durward QJ, Amacher AL, Del Maestro RF, Sibbald WJ. Cerebral and cardiovascular responses to changes in head elevation in patients with intracranial hypertension. J Neurosurg. 1983;59(C):938–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosner MJ, Coley IB. Cerebral perfusion pressure, intracranial pressure, and head elevation. J Neurosurg. 1986;65(5):636–41.PubMedCrossRefGoogle Scholar
  69. 69.
    Ng I, Lim J, Wong HB. Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. Neurosugery. 2004;54(3):593–7.CrossRefGoogle Scholar
  70. 70.
    Moraine JJ, Berre J, Melot C. Is cerebral perfusion pressure a major determinant of cerebral blood flow during head elevation in patients with severe intracranial lesions? J Neurosurg. 2000;92(4):606–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Feldman Z, Kanter MJ, Robertson CS, Contant CF, Hayes C, Sheinberg MA, et al. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg. 1992;76(2):207–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75(5):731–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Newell DW, Weber JP, Watson R, Aaslid R, Winn HR. Effect of transiet moderate hyperventilation on dynamic cerebral autoregulation after severe head injury. Neurosurgery. 1996;39(1):35–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Muizelaar JP, van der Poel HG, Li ZC, Kontos HA, Levasseur JE. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;69(6):923–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Javid M, Settlage P. Effect of urea on cerebrospinal fluid pressure in human subjects; preliminary report. J Am Med Assoc. 1956;160(11):943–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Wise BL, Chater N. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure. J Neurosurg. 1962;19:1038–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesth. 1992;4(1):4–10.CrossRefGoogle Scholar
  78. 78.
    Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med [Internet]. 2012;367(8):746–52. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMct1206321.PubMedCrossRefGoogle Scholar
  79. 79.
    Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9.PubMedCrossRefGoogle Scholar
  80. 80.
    McDowell ME, Wolf AV, Steer A. Osmotic volumes of distribution; idiogenic changes in osmotic pressure associated with administration of hypertonic solutions. Am J Phys. 1955;180(3):545–58.CrossRefGoogle Scholar
  81. 81.
    Muzelaar JP, Wei EP, Becker DP. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg. 1983;59(5):822–8.CrossRefGoogle Scholar
  82. 82.
    Brophy GM, Human T, Shutter L. Emergency neurological life support: pharmacotherapy. Neurocrit Care. 2015;23:48–68.CrossRefGoogle Scholar
  83. 83.
    James HE, Langfitt TW, Kumar VS, Ghostine SY. Treatment of intracranial hypertension. Analysis of 105 consecutive, continuous recordings of intracranial pressure. Acta Neurochir. 1977;36(3–4):189–200.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Palma L, Bruni G, Fiaschi AI, Mariottni A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci. 2006;50(3):63–6.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Rudehill A, Gordon E, Ohman G, Lindqvist C, Andersson P. Pharmacokinetics and effects of mannitol on hemodynamics, blood and cerebrospinal fluid electrolytes, and osmolality during intracranial surgery. J Neurosurg Anesth. 1993;5(1):4–12.CrossRefGoogle Scholar
  86. 86.
    Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70(25):1023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mangat HS, Chiu Y-L, Gerber LM, Alimi M, Ghajar J, Härtl R. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury. J Neurosurg [Internet]. 2015;122(1):202–10. Available from: http://thejns.org/doi/10.3171/2014.10.JNS132545.CrossRefGoogle Scholar
  88. 88.
    Cottenceau V, Masson F, Mahamid E, Petit L, Shik V, Sztark F, et al. Comparison of effects of equiosmolar doses of mannitol and hypertonic saline on cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma. 2011;28(10):2003–12.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    McNamara B, Ray J, Menon D, Boniface S. Raised intracranial pressure and seizures in the neurological intensive care unit. Br J Anaesth [Internet]. 2003;90(1):39–42. Available from:  https://doi.org/10.1093/bja/aeg008PubMedCrossRefGoogle Scholar
  90. 90.
    Ko SB, Ortega-Gutierrez S, Choi HA, Claassen J, Presciutti M, Schmidt JM, et al. Status epilepticus-induced hyperemia and brain tissue hypoxia after cardiac arrest. Arch Neurol. 2011;68(10):1323–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Gujjar AR, Nandhagopal R, Jacob PC, Al-Hashim A, Al-Amrani K, Ganguly SS, et al. Intravenous levetiracetam vs phenytoin for status epilepticus and cluster seizures: a prospective, randomized study. Seizure [Internet]. 2017;49:8–12. Available from:  https://doi.org/10.1016/j.seizure.2017.05.001.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Chakravarthi S, Goyal MK, Modi M, Bhalla A, Singh P. Levetiracetam versus phenytoin in management of status epilepticus. J Clin Neurosci [Internet]. 2015;22(6):959–63. Available from:  https://doi.org/10.1016/j.jocn.2014.12.013CrossRefGoogle Scholar
  93. 93.
    Ibrahim K, Christoph M, Schmeinck S, Schmieder K, Steiding K, Schoener L, et al. High rates of prasugrel and ticagrelor non-responder in patients treated with therapeutic hypothermia after cardiac arrest. Theatr Res Int. 2014;85(5):649–56. Available from:  https://doi.org/10.1016/j.resuscitation.2014.02.004Google Scholar
  94. 94.
    Scirica BM. Therapeutic hypothermia after cardiac arrest. Circulation. 2013;127(2):244–50.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Arrich J, Holzer M, Havel C, Müllner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012;12(9):CD004128.Google Scholar
  96. 96.
    Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR, et al. Lack of effect of induced hypthermia after acute brain injury. N Engl J Med. 2001;344(8):556–63.CrossRefGoogle Scholar
  97. 97.
    Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol [Internet]. 2011 Feb [cited 2014 Dec 3];10(2):131–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3628679&tool=pmcentrez&rendertype=abstract.
  98. 98.
    Clifton GL, Coffey CS, Fourwinds S, Zygun D, Valadka A, Smith KR, et al. Early induction of hypothermia for evacuated intracranial hematomas: a post hoc analysis of two clinical trials. J Neurosurg. 2012;117(4):714–20.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nichol A, Gantner D, Presneill J, Murray L, Trapani T, Bernard S, et al. Protocol for a multicentre randomised controlled trial of early and sustained prophylactic hypothermia in the management of traumatic brain injury. Crit Care Resusc. 2015;17(2):92–100.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Andrews PJD, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JKJ, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med [Internet]. 2015;373(25):2403–12. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa1507581.CrossRefGoogle Scholar
  101. 101.
    Komotar RJ, Starke RM, Connolly ES. The role of decompressive craniectomy in diffuse traumatic brain injury. Neurosurgery. 2011;69(2):N22–3.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Marion DW. Decompressive craniectomy in diffuse traumatic brain injury. Lancet Neurol [Internet]. 2011;10(6):497–8. Available from:  https://doi.org/10.1016/S1474-4422(11)70098-9PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2012;367(15):1387–96.CrossRefGoogle Scholar
  104. 104.
    Honeybul S, Ho KM, Lind CRP. What can be learned from the DECRA study. World Neurosurg. 2013;79(1):159–61.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus [Internet]. 2009;26(6):E7. Available from: http://thejns.org/doi/10.3171/2009.4.FOCUS0965.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Jiang JY, Xu W, Li WP, Xu WH, Zhang J, Bao YH, et al. Efficacy of standard trauma craniectomy for refractory intracranial hypertension with severe traumatic brain injury: a multicenter, prospective, randomized controlled study. J Neurotrauma. 2005;22(6):623–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Qiu W, Guo C, Shen H, Chen K, Wen L, Huang H, et al. Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care. 2009;13(6):1–7.CrossRefGoogle Scholar
  109. 109.
    Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial). Stroke. 2007;38(9):2506–17.CrossRefGoogle Scholar
  110. 110.
    Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy after middle cerebral artery infarction with life-threatening edema trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol [Internet]. 2009;8(4):326–33. Available from:  https://doi.org/10.1016/S1474-4422(09)70047-XPubMedCrossRefGoogle Scholar
  111. 111.
    Wijdicks EFM, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al. Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke [Internet]. 2014 May [cited 2014 May 31];45(4):1222–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24481970.
  112. 112.
    Hofmeijer J, Schepers J, Veldhuis WB, Nicolay K, Kappelle LJ, Bär PR, et al. Delayed decompressive surgery increases apparent diffusion coefficient and improves peri-infarct perfusion in rats with space-occupying cerebral infarction. Stroke. 2004;35(6):1476–81.PubMedCrossRefGoogle Scholar
  113. 113.
    Cooper PR, Hagler H, Clark WK, Barnett P. Enhancement of experimental cerebral edema after decompressive craniectomy: implications for the management of severe head injuries. Neurosurgery. 1979;4(4):296–300.PubMedCrossRefGoogle Scholar
  114. 114.
    Theodore WH, DiChiro G, Margolin R, Fishbein D, Porter RJ, Brooks RA. Barbiturates reduce human cerebral glucose metabolism. Neurology. 1986;36(1):60–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Bilotta F, Gelb AW, Stazi E, Titi L, Paoloni FP, Rosa G. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth [Internet]. 2013;110(SUPPL.1):i113–20. Available from:  https://doi.org/10.1093/bja/aet059CrossRefGoogle Scholar
  116. 116.
    Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev [Internet]. 2012;12:1–25. Available from: http://doi.wiley.com/10.1002/14651858.CD000033.
  117. 117.
    Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med. 2011;39(12):2743–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Pérez-Bárcena J, Llompart-Pou JA, Homar J, Abadal JM, Raurich JM, Frontera G, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care. 2008;12(4):1–10.CrossRefGoogle Scholar
  119. 119.
    Ward JD, Becker DP, Miller JD, Choi SC, Marmarou A, Wood C, et al. Failure of prophylactic barbiturate coma in the treatment of severe head injury. J Neurosurg [Internet]. 1985;62(3):383–8. Available from: http://thejns.org/doi/10.3171/jns.1985.62.3.0383.PubMedCrossRefGoogle Scholar
  120. 120.
    Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg [Internet]. 1988;69(1):15–23. Available from: http://thejns.org/doi/10.3171/jns.1988.69.1.0015.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Cosio BG, Torrego A, Adcock IM. Molecular mechanisms of glucocorticoids. Arch Bronconeumol. 2005;41(1):34–41.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS. Molecular mechanisms of brain tumor edema. Neuroscience. 2004;129(4):1011–20.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Heiss JD, Papavassiliou E, Merrill MJ, Nieman L, Knightly JJ, Walbridge S, et al. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats: involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest. 1996;98(6):1400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hedley-Whyte ET, Hsu DW. Effect of dexamethasone on blood-brain barrier in the normal mouse. Ann Neurol. 1986;19(4):373–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Bastin ME, Carpenter TK, Armitage PA, Sinha S, Wardlaw JM, Whittle IR. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol [Internet]. 2006;27(2):402–8. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16484419&retmode=ref&cmd=prlinks%5Cnpapers3://publication/uuid/225020BC-0D43-4D1D-85FE-C02A68B841E4.Google Scholar
  127. 127.
    Sinha S, Bastin ME, Wardlaw JM, Armitage PA, Whittle IR. Effects of dexamethasone on peritumoural oedematous brain: a DT-MRI study. J Neurol Neurosurg Psychiatry. 2004;75(11):1632–5.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Renaudin J, Fewer D, Wilson CB, Boldrey EB, Calogero J, Enot KJ. Dose dependency of decadron in patients with partially excised brain tumors. J Neurosurg. 1973;39(3):302–5.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    French LA, Galicich JH. The use of steroids for control of cerebral edema. Clin Neurosurg. 1964;10:212–23.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ryken TC, McDermott M, Robinson PD, Ammirati M, Andrews DW, Asher AL, et al. The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline. J Neuro-Oncol. 2010;96(1):103–14.CrossRefGoogle Scholar
  131. 131.
    Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, et al. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg. 1998;89(4):519–25.PubMedCrossRefGoogle Scholar
  132. 132.
    Olldashi F, Muzha I, Filipi N, Lede R, Copertari P, Traverso C, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Baigent C, Bracken M, Chadwick D, Curley K, Duley L, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury - outcomes at 6 months. Lancet. 2005;365(9475):1957–9.CrossRefGoogle Scholar
  134. 134.
    Roh D, Reznik M, Claassen J. Chronic subdural medical management. Neurosurg Clin N Am [Internet]. 2017;28(2):211–7. Available from:  https://doi.org/10.1016/j.nec.2016.11.003CrossRefGoogle Scholar
  135. 135.
    Henaux P-L, Le Reste P-J, Laviolle B, Morandi X. Steroids in chronic subdural hematomas (SUCRE trial): study protocol for a randomized controlled trial. Trials [Internet]. 2017;18(1):252. Available from: http://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-1990-8.CrossRefGoogle Scholar
  136. 136.
    Mohney N, Williamson CA, Rothman E, Ball R, Sheehan KM, Pandey AS, et al. A propensity score analysis of the impact of dexamethasone use on delayed cerebral ischemia and poor functional outcomes after subarachnoid hemorrhage. World Neurosurg [Internet]. 2018;109:e655–61. Available from:  https://doi.org/10.1016/j.wneu.2017.10.051.CrossRefGoogle Scholar
  137. 137.
    Czorlich P, Sauvigny T, Ricklefs F, Abboud T, Nierhaus A, Vettorazzi E, et al. Impact of dexamethasone in patients with aneurysmal subarachnoid haemorrhage. Eur J Neurol. 2017;24(4):645–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Koehler PJ. Use of corticosteroids in neuro-oncology. Anti-Cancer Drugs. 1995;6(1):19–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Dietrich J, Rao K, Pastorino S, Kesari S. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharm. 2011;4(2):233–42.CrossRefGoogle Scholar
  140. 140.
    Ruegg S. Dexamethasone/phenytoin interactions: neurooncological concerns. Swiss Med Wkly. 2002;132(29–30):425–6.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Chalk JB, Ridgeway K, Brophy T, Yelland JD, Eadie MJ. Phenytoin impairs the bioavailabilty of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry. 1984;47(10):1087–90.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Haque N, Thrasher K, Werk EE, Knowles HC, Sholiton LJ. Studies on dexamethasone metabolism in man: effect of diphenylhydantoin. J Clin Endocrinol Metab. 1972;34(1):44–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Penry JK, Newmark ME. The use of antiepileptic drugs. Ann Intern Med. 1979;90(2):207–18.PubMedCrossRefGoogle Scholar
  144. 144.
    McCall M, Jeejeebhoy K, Pencharz P, Moulton R. Effect of neuromuscular blockade on energy expenditure in patients with severe head injury. J Parenter Enter Nutr. 2003;27(1):27–35.CrossRefGoogle Scholar
  145. 145.
    Vernon DD, Witte MK. Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med. 2000;28(5):1569–71.PubMedCrossRefGoogle Scholar
  146. 146.
    Kerr ME, Sereika SM, Orndoff P, Weber B, Rudy EB, Marion D, et al. Effect of neuromuscular blockers and opiates on the cerebrovascular response to endotracheal suctioning in adults with severe head injuries. Am J Crit Care. 1998;7(3):205–17.PubMedCrossRefGoogle Scholar
  147. 147.
    Werba A, Klezl M, Schramm W, Langenecker S, Muller C, Gosch M, et al. The level of neuromuscular block needed to suppress diaphragmatic movement during tracheal suction in patients with raised intracranial pressure: a study with vecuronium and atracurium. Anaesthesia. 1993;48(4):301–3.PubMedCrossRefGoogle Scholar
  148. 148.
    White PF, Schlobohm RM, Pitts LH, Lindauer JM. A randomized study of drugs for preventing increases in intracranial pressure during endotracheal suctioning. Anesthesiology. 1982;57(3):242–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Steingrub JS, Lagu T, Rothberg MB, Nathanson BH, Raghunathan K, Lindenauer PK. Treatment with neuromuscular blocking agents and the risk of in-hospital mortality among mechanically ventilated patients with severe sepsis. Crit Care Med. 2014;42(1):90–6.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Forel J-M, Roch A, Marin V, Michelet P, Demory D, Blache J-L, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome∗. Crit Care Med. 2006;34(11):2749–57. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00003246-200611000-00007.PubMedCrossRefGoogle Scholar
  151. 151.
    Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65(2):165–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinyulcholine-induced increases in intracranial pressure. Anesthesiology. 1987;67(1):50–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Juul N, Morris GF, Marshall SB, Marshall LF. Neuromuscular blocking agents in neurointensive care. Acta Neurochir Suppl. 2000;76:467–70.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Hsiang JK, Chestnut RM, Crisp CB, Klauber MR, Blunt BA, Marshall LF. Early, routine paralysis for intracranial pressure control in severe head injury: is it necessary? Crit Care Med. 1994;22(9):1471–6.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10):931–41. Available from:  https://doi.org/10.1016/S1474-4422(11)70178-8PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA, Pronovost PJ, Needham DM. Neuromuscular dysfunction acquired in critical illness: a systematic review. Intensive Care Med. 2007;33(11):1876–91.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The role of neuromuscular blockade in patients with traumatic brain injury: a systematic review. Neurocrit Care. 2015;22(2):325–34.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aaron M. Gusdon
    • 1
    Email author
  • Paul A. Nyquist
    • 2
  • Sarah E. Nelson
    • 3
  1. 1.Department of NeurosurgeryMischer Neuroscience Institute, McGovern Medical SchoolHoustonUSA
  2. 2.Departments of Neurology, Neurosurgery, Anesthesiology & Critical Care Medicine, and MedicineJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Neurology and Anesthesiology & Critical Care MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations