Advertisement

Coupling Agent-Based Modelling with Geographic Information Systems for Environmental Studies—A Review

  • Tanya Cristina EstevesEmail author
  • Fátima Lopes Alves
  • Eric Vaz
Chapter
  • 24 Downloads

Abstract

With the increase of worldwide population, the environment has suffered intensely, where climate change issues are some of the top priorities for decision-makers worldwide. The extreme events recently witnessed have affected a countless number of people, with the loss of lives, properties and livelihood. Resourcing to technologies that facilitate decision-making is one of the viable options to correct our current path into the future. By using agent-based modelling coupled with geographical information systems, an effective platform can be created to design a bottom-up approach in policy creation and planning. This review paper analyses studies that have applied this methodology, yielding a vast range of results that were divided into nine different sustainable development categories: natural resources, social participation and trust, material welfare and economy, climate and energy, technology, biodiversity and landscape, mobility, safety and land development. The number of results shows that these studies are extremely relevant to the sustainable development topic. Although having manifested some limitations related to the transparency of the model design or validation issues, the application of agent-based modelling coupled with geographical information systems proved a competent tool for implementation in environmental and sustainability subjects.

Keywords

Environment Climate change Geographic information systems Agent-based modelling Sustainability Decision support system 

Notes

Acknowledgements

The first author has been supported by the Portuguese Foundation for Science and Technology (Fundação Portuguesa para a Ciência e Tecnologia—FCT), co-funded by FSE and national funds by MCTES, under the contract SFRH/BD/105590/2014. Thanks are also due for the financial support to CESAM (UID/AMB/50017/2019), to FCT/MCTES through national funds.

References

  1. Ahlqvist, O., Khodke, N., & Ramnath, R. (2018). GeoGame analytics—A cyber-enabled petri dish for geographic modeling and simulation. Computers, Environment and Urban Systems, 67, 1–8.  https://doi.org/10.1016/j.compenvurbsys.2017.08.013.CrossRefGoogle Scholar
  2. Alghais, N., & Pullar, D. (2018). Modelling future impacts of urban development in Kuwait with the use of ABM and GIS. Transactions in GIS, 22(1), 20–42.  https://doi.org/10.1111/tgis.12293.CrossRefGoogle Scholar
  3. Alves, F. L., Sousa, L. P., Esteves, T. C., Oliveira, E. R., Antunes, I. C., Fernandes, M. D. L., … Pereira, M. (2014). Trend change(s) in coastal management plans: The integration of short and medium term perspectives in the spatial planning process. Journal of Coastal Research, 70.  https://doi.org/10.2112/SI70-074.1.
  4. Amato, F., Maimone, B., Martellozzo, F., Nolè, G., & Murgante, B. (2016). The effects of urban policies on the development of urban areas. Sustainability, 8(4), 297.  https://doi.org/10.3390/su8040297.CrossRefGoogle Scholar
  5. Anderson, T. M., & Dragićević, S. (2018). Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems. Ecological Modelling, 389(May), 19–32.  https://doi.org/10.1016/j.ecolmodel.2018.10.008.CrossRefGoogle Scholar
  6. Ausloos, M., Dawid, H., & Merlone, U. (2015). Spatial interactions in agent-based modeling. In P. Commendatore, S. Kayam, & I. Kubin (Eds.), Complexity and geographical economics. Dynamic modeling and econometrics in economics and finance (pp. 353–377).  https://doi.org/10.1007/978-3-319-12805-4_14.
  7. Aziz, H. M. A., Park, B. H., Morton, A., Stewart, R. N., Hilliard, M., & Maness, M. (2017). A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City. Transportation Research Part C: Emerging Technologies, 86(November 2016), 280–299.  https://doi.org/10.1016/j.trc.2017.11.008.
  8. Bandyopadhyay, M., & Singh, V. (2018). Agent-based geosimulation for assessment of urban emergency response plans. Arabian Journal of Geosciences, 11(8).  https://doi.org/10.1007/s12517-018-3523-5.
  9. Barau, A. S., & Qureshi, S. (2015). Using agent-based modelling and landscape metrics to assess landscape fragmentation in Iskandar Malaysia. Ecological Processes, 4(1), 1–11.  https://doi.org/10.1186/s13717-015-0033-1.CrossRefGoogle Scholar
  10. Batty, M. (2011). Modeling and simulation in geographic information science: Integrated models and grand challenges. Procedia Social and Behavioral Sciences, 21, 10–17.  https://doi.org/10.1016/j.sbspro.2011.07.003.CrossRefGoogle Scholar
  11. Batty, M. (2012). Building a science of cities. Cities, 29, S9–S16.  https://doi.org/10.1016/J.CITIES.2011.11.008.CrossRefGoogle Scholar
  12. Bhamidipati, S., van der Lei, T., & Herder, P. (2016). A layered approach to model interconnected infrastructure and its significance for asset management. European Journal of Transport and Infrastructure Research, 16(1), 254–272.Google Scholar
  13. Bickel, M. W. (2017). A new approach to semantic sustainability assessment: Text mining via network analysis revealing transition patterns in German municipal climate action plans. Energy, Sustainability and Society, 7(22).  https://doi.org/10.1186/s13705-017-0125-0.
  14. Bonhomme, A., Mathieu, P., & Picault, S. (2016). A versatile multi-agent traffic simulator framework based on real data. International Journal on Artificial Intelligence Tools, 25(01), 1660006.  https://doi.org/10.1142/s021821301660006x.CrossRefGoogle Scholar
  15. Brown, K. (2006). Re-presenting GIS. In P. Fisher & D. J. Unwin (Eds.), The Geographical Journal (Vol. 172).  https://doi.org/10.1111/j.1475-4959.2006.00219_3.x.
  16. Brundtland, G. H. (1987). Our common future: Report of the world commission on environment and development. Retrieved from http://www.un-documents.net/our-common-future.pdf.
  17. Campagna, M. (2006). GIS for sustainable development. Retrieved from https://www.crcpress.com/GIS-for-Sustainable-Development/Campagna/p/book/9780849330513.
  18. Campos, I., Guerra, J., Gomes, J. F., Schmidt, L., Alves, F., Vizinho, A., et al. (2017). Understanding climate change policy and action in Portuguese municipalities: A survey. Land Use Policy, 62, 68–78.  https://doi.org/10.1016/j.landusepol.2016.12.015.CrossRefGoogle Scholar
  19. Cantergiani, C., & Gomez Delgado, M. (2016). Design of an agent-based model to simulate urban growth at Corredor Del Henares (Region of Madrid). Boletin De La Asociacion De Geografos Espanoles, 70, 499–503.Google Scholar
  20. Caputo, P., Pasetti, G., & Bonomi, M. (2016). Urban metabolism analysis as a support to drive metropolitan development. Procedia Engineering, 161, 1588–1595.  https://doi.org/10.1016/j.proeng.2016.08.631.CrossRefGoogle Scholar
  21. Carpenter-Kling, T., Pistorius, P., Connan, M., Reisinger, R., Magozzi, S., & Trueman, C. (2019). Sensitivity of δ13C values of seabird tissues to combined spatial, temporal and ecological drivers: A simulation approach. Journal of Experimental Marine Biology and Ecology, 512(January), 12–21.  https://doi.org/10.1016/j.jembe.2018.12.007.CrossRefGoogle Scholar
  22. Catalán, B., Saurí, D., & Serra, P. (2008). Urban sprawl in the mediterranean?: Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landscape and Urban Planning, 85(3–4), 174–184.  https://doi.org/10.1016/J.LANDURBPLAN.2007.11.004.CrossRefGoogle Scholar
  23. Chrysoulakis, N., Lopes, M., San José, R., Grimmond, C. S. B., Jones, M. B., Magliulo, V., … Cartalis, C. (2013). Sustainable urban metabolism as a link between bio-physical sciences and urban planning: The BRIDGE project. Landscape and Urban Planning, 112(1), 100–117.  https://doi.org/10.1016/j.landurbplan.2012.12.005.
  24. Crooks, A. T. (2010). SERIES using geospatial agent-based models for studying cities. Retrieved from https://www.semanticscholar.org/paper/SERIES-Using-Geospatial-Agent-Based-Models-for-Crooks/d9d9fc7a261ac81f570c5093b1baa7ee7bf94757.
  25. Crooks, A. (2015). Agent-based modeling and geographical information systems. In C. Brunsdon & A. Singleton (Eds.), Geocomputation: A practical primer (p. 369). London: SAGE.Google Scholar
  26. Crooks, A., Malleson, N., Manley, E., & Heppenstall, A. J. (2019). In R. Rojek (Ed.) Agent-based modelling and geographical information systems: A practical primer. London: SAGE.Google Scholar
  27. Cubasch, U., Wuebbles, D., Chen, D., Facchini, M. C., Frame, D., Mahowald, N., & Winther, J.-G. (2013). Introduction. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter01_FINAL.pdf.
  28. De Sario, M., Katsouyanni, K., & Michelozzi, P. (2013). Climate change, extreme weather events, air pollution and respiratory health in Europe. European Respiratory Journal, 42, 826–843.  https://doi.org/10.1183/09031936.00074712.CrossRefGoogle Scholar
  29. de Sousa, L. M., & da Silva, A. R. (2016). A domain specific language for spatial simulation scenarios. Geoinformatica, 20(1), 117–149.  https://doi.org/10.1007/s10707-015-0233-y.CrossRefGoogle Scholar
  30. Démare, T., Bertelle, C., Dutot, A., & Lévêque, L. (2017). Modeling logistic systems with an agent-based model and dynamic graphs. Journal of Transport Geography, 62(May 2015), 51–65.  https://doi.org/10.1016/j.jtrangeo.2017.04.007.
  31. Dragicevic, S. (2008). Editorial—Geocomputation: Modeling with spatial agents. Computers, Environment and Urban Systems, 32, 415–416.  https://doi.org/10.1016/j.compenvurbsys.2008.10.002.
  32. Dressler, G., Müller, B., Frank, K., & Kuhlicke, C. (2016). Towards thresholds of disaster management performance under demographic change: Exploring functional relationships using agent-based modeling. Natural Hazards and Earth System Sciences, 16(10), 2287–2301.  https://doi.org/10.5194/nhess-16-2287-2016.CrossRefGoogle Scholar
  33. Dubbelboer, J., Nikolic, I., Jenkins, K., & Hall, J. (2017). An agent-based model of flood risk and insurance. Jasss, 20(1).  https://doi.org/10.18564/jasss.3135.
  34. Eid, M. S., & El-adaway, I. H. (2017). Integrating the social vulnerability of host communities and the objective functions of associated stakeholders during disaster recovery processes using agent-based modeling. Journal of Computing in Civil Engineering, 31(5), 04017030.  https://doi.org/10.1061/(asce)cp.1943-5487.0000680.CrossRefGoogle Scholar
  35. Elia, V., Gnoni, M. G., & Tornese, F. (2018). Improving logistic efficiency of WEEE collection through dynamic scheduling using simulation modeling. Waste Management, 72, 78–86.  https://doi.org/10.1016/j.wasman.2017.11.016.CrossRefGoogle Scholar
  36. Esteves, T., Vaz, E., & Alves, F. L. (2017). Supporting policy development in the Aveiro region by modeling urban sustainability. Public Policy Portuguese Journal, 2(2), 19–37. Retrieved from file:///C:/Users/tanya/Downloads/Public Policy Portuguese Journal_Volume 2_Number 2_2017.pdf.Google Scholar
  37. European Commission. (2015). Indicators for sustainable cities—Issue 12. In European Commission.  https://doi.org/10.2779/61700.
  38. Filatova, T. (2015). Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models. Computers, Environment and Urban Systems, 54, 397–413.  https://doi.org/10.1016/j.compenvurbsys.2014.06.007.CrossRefGoogle Scholar
  39. Gallagher, S., Richardson, L. F., Ventura, S. L., & Eddy, W. F. (2018). SPEW: Synthetic populations and ecosystems of the world. Journal of Computational and Graphical Statistics, 27(4), 773–784.  https://doi.org/10.1080/10618600.2018.1442342.CrossRefGoogle Scholar
  40. Giełda-Pinas, K., Dzieszko, P., Zwoliński, Z., & Ligmann-Zielińska, A. (2015). Two strategies of agent-based modelling application for management of lakeland landscapes at a regional scale. Quaestiones Geographicae, 34(3), 33–50.  https://doi.org/10.1515/quageo-2015-0031.CrossRefGoogle Scholar
  41. González, A., Donnelly, A., Jones, M., Chrysoulakis, N., & Lopes, M. (2013). A decision-support system for sustainable urban metabolism in Europe. Environmental Impact Assessment Review, 38, 109–119.  https://doi.org/10.1016/j.eiar.2012.06.007.CrossRefGoogle Scholar
  42. Gray, S., Voinov, A., Paolisso, M., Jordan, R., BenDor, T., Bommel, P., … Zellner, M. (2017). Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling. Ecological Applications, 28(1), 46–61.  https://doi.org/10.1002/eap.1627.
  43. Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: A review and first update. Ecological Modelling, 221(23), 2760–2768.  https://doi.org/10.1016/j.ecolmodel.2010.08.019.CrossRefGoogle Scholar
  44. Heath, B. L. (2010). The history, philosophy, and practice of agent-based modeling and the development of the conceptual model for simulation diagram (Wright State University). Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=wright1269176275&disposition=inline.
  45. Heinänen, S., Chudzinska, M. E., Brandi Mortensen, J., Teo, T. Z. E., Rong Utne, K., Doksæter Sivle, L., et al. (2018). Integrated modelling of Atlantic mackerel distribution patterns and movements: A template for dynamic impact assessments. Ecological Modelling, 387(June), 118–133.  https://doi.org/10.1016/j.ecolmodel.2018.08.010.CrossRefGoogle Scholar
  46. Heppenstall, A. J., Crooks, A., See, L., & Batty, M. (Eds.). (2012). Agent-based models of geographical systems (1st ed.).  https://doi.org/10.1007/978-90-481-8927-4.
  47. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., … Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences.  https://doi.org/10.1073/pnas.1222469111.
  48. Hirtle, S. C., & Frank, A. U. (Eds.). (1997). Spatial information theory a theoretical basis for GIS.  https://doi.org/10.1007/3-540-63623-4.
  49. Holden, E., Linnerud, K., & Banister, D. (2014). Sustainable development: Our common future revisited. Global Environmental Change, 26, 130–139.  https://doi.org/10.1016/j.gloenvcha.2014.04.006.CrossRefGoogle Scholar
  50. Hooshangi, N., & Alesheikh, A. (2018). Developing an agent-based simulation system for post-earthquake operations in uncertainty conditions: A proposed method for collaboration among agents. ISPRS International Journal of Geo-Information, 7(1), 27.  https://doi.org/10.3390/ijgi7010027.CrossRefGoogle Scholar
  51. Huntington, H. G., Weyant, J. P., & Sweeney, J. L. (1982). Modeling for insights, not numbers: The experiences of the energy modeling forum. Omega, 10(5), 449–462.  https://doi.org/10.1016/0305-0483(82)90002-0.CrossRefGoogle Scholar
  52. Imran, H. A., Schröder, D., & Munir, B. A. (2017). Agent-based simulation for biogas power plant potential in Schwarzwald-Baar-Kreis, Germany: A step towards better economy. Geocarto International, 32(1), 59–70.  https://doi.org/10.1080/10106049.2015.1128485.CrossRefGoogle Scholar
  53. IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, … T. Waterfield (Eds.), Global warming of 1.5 °C—An IPCC SR on the impacts of global warming of 1.5 °C above pre-industrial levels & related global GHG emission pathways, in the context of strengthening the global response to the threat of CC, SD, & efforts to eradicate poverty (p. 32). Retrieved from http://www.ipcc.ch/pdf/special-reports/sr15/sr15_spm_final.pdf.
  54. Jacobs-Crisioni, C., & Koopmans, C. C. (2016). Transport link scanner: Simulating geographic transport network expansion through individual investments. Journal of Geographical Systems, 18(3), 265–301.  https://doi.org/10.1007/s10109-016-0233-y.CrossRefGoogle Scholar
  55. Jokar Arsanjani, J., Helbich, M., & de Noronha Vaz, E. (2013). Spatiotemporal simulation of urban growth patterns using agent-based modeling: The case of Tehran. Cities, 32, 33–42.  https://doi.org/10.1016/J.CITIES.2013.01.005.CrossRefGoogle Scholar
  56. Kennedy, C., Cuddihy, J., & Engel-Yan, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11(2), 43–59.CrossRefGoogle Scholar
  57. Kim, S., Kim, S., & Kiniry, J. R. (2018). Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simulation Modelling Practice and Theory, 86(April), 155–168.  https://doi.org/10.1016/j.simpat.2018.05.006.CrossRefGoogle Scholar
  58. Kin, B., Ambra, T., Verlinde, S., & Macharis, C. (2018). Tackling fragmented last mile deliveries to nanostores by utilizing spare transportation capacity—A simulation study. Sustainability (Switzerland), 10(3).  https://doi.org/10.3390/su10030653.
  59. Lee, M., & Hong, T. (2019). Hybrid agent-based modeling of rooftop solar photovoltaic adoption by integrating the geographic information system and data mining technique. Energy Conversion and Management, 183(January), 266–279.  https://doi.org/10.1016/j.enconman.2018.12.096.CrossRefGoogle Scholar
  60. Li, H., & Kwan, M.-P. (2017). Advancing analytical methods for urban metabolism studies. Resources, Conservation and Recycling, (March).  https://doi.org/10.1016/j.resconrec.2017.07.005.
  61. Li, J., Oyana, T. J., & Mukwaya, P. I. (2016). An examination of historical and future land use changes in Uganda using change detection methods and agent-based modelling. African Geographical Review, 35(3), 247–271.  https://doi.org/10.1080/19376812.2016.1189836.CrossRefGoogle Scholar
  62. Lichter, M., Grinberger, A., & Felsenstein, D. (2015). Simulating and communicating outcomes in disaster management situations. ISPRS International Journal of Geo-Information, 4(4), 1827–1847.  https://doi.org/10.3390/ijgi4041827.CrossRefGoogle Scholar
  63. Liu, W., Chang, A. C., Chen, W., Zhou, W., & Feng, Q. (2017). A framework for the urban eco-metabolism model—Linking metabolic processes to spatial patterns. Journal of Cleaner Production, 165, 168–176.  https://doi.org/10.1016/j.jclepro.2017.07.055.CrossRefGoogle Scholar
  64. Liu, X., & Lim, S. (2016). Integration of spatial analysis and an agent-based model into evacuation management for shelter assignment and routing. Journal of Spatial Science, 61(2), 283–298.  https://doi.org/10.1080/14498596.2016.1147393.CrossRefGoogle Scholar
  65. Liu, H., Silva, E. A., & Wang, Q. (2016). Incorporating GIS data into an agent-based model to support planning policy making for the development of creative industries. Journal of Geographical Systems, 18(3), 205–228.  https://doi.org/10.1007/s10109-016-0229-7.CrossRefGoogle Scholar
  66. Lu, M., & Hsu, S.-C. (2017). Spatial agent-based model for environmental assessment of passenger transportation. Journal of Urban Planning and Development, 143(4), 04017016.  https://doi.org/10.1061/(asce)up.1943-5444.0000403.CrossRefGoogle Scholar
  67. Macatulad, E. G., & Blanco, A. C. (2018). A 3DGIS multi-agent geo-simulation model for assessment of building evacuation scenarios considering urgency and knowledge of exits. International Journal of Urban Sciences, 1–17.  https://doi.org/10.1080/12265934.2018.1549505.
  68. Makarov, V. L., & Okrepilov, V. V. (2016). Principles of life quality monitoring based on agent-oriented models. Herald of the Russian Academy of Sciences, 86(4), 322–328.  https://doi.org/10.1134/s1019331616040092.CrossRefGoogle Scholar
  69. Makinoshima, F., Imamura, F., & Abe, Y. (2018). Enhancing a tsunami evacuation simulation for a multi-scenario analysis using parallel computing. Simulation Modelling Practice and Theory, 83, 36–50.  https://doi.org/10.1016/j.simpat.2017.12.016.CrossRefGoogle Scholar
  70. Mann, M. E., Lloyd, E. A., & Oreskes, N. (2017). Assessing climate change impacts on extreme weather events: The case for an alternative (Bayesian) approach. Climatic Change, 144(2), 131–142.  https://doi.org/10.1007/s10584-017-2048-3.CrossRefGoogle Scholar
  71. Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin, R., … Schwarz, N. (2013). Describing human decisions in agent-based models—ODD + D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48.  https://doi.org/10.1016/J.ENVSOFT.2013.06.003.
  72. Na, H. S., & Banerjee, A. (2019). Agent-based discrete-event simulation model for no-notice natural disaster evacuation planning. Computers & Industrial Engineering, 129(January), 44–55.  https://doi.org/10.1016/j.cie.2019.01.022.CrossRefGoogle Scholar
  73. Nguyen-Trong, K., Nguyen-Thi-Ngoc, A., Nguyen-Ngoc, D., & Dinh-Thi-Hai, V. (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model. Waste Management, 59, 14–22.  https://doi.org/10.1016/j.wasman.2016.10.048.CrossRefGoogle Scholar
  74. Noble, I. R., Huq, S., Anokhin, Y. A., Carmin, J., Goudou, D., Lansigan, F. P., … Villamizar, A. (2014). In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, … L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/WGIIAR5-FrontMatterA_FINAL.pdf.
  75. Panagopoulos, T., Duque, J. A. G., & Dan, M. B. (2016). Urban planning with respect to environmental quality and human well-being. Environmental Pollution, 208, 137–144.  https://doi.org/10.1016/j.envpol.2015.07.038.CrossRefGoogle Scholar
  76. Piña, W. A., & Martínez, C. P. (2016). Development and urban sustainability: An analysis of efficiency using data envelopment analysis. Sustainability, 8(2), 148.  https://doi.org/10.3390/su8020148.CrossRefGoogle Scholar
  77. QuanLi, X., Kun, Y., GuiLin, W., & YuLian, Y. (2015). Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: A case study of the Erhai Lake Basin, China. Natural Hazards, 75(1), 95–118.  https://doi.org/10.1007/s11069-014-1303-4.CrossRefGoogle Scholar
  78. Ramcilovic-Suominen, S., & Pülzl, H. (2018). Sustainable development—A “selling point” of the emerging EU bioeconomy policy framework? Journal of Cleaner Production, 172, 4170–4180.  https://doi.org/10.1016/j.jclepro.2016.12.157.
  79. Ripple, W. J., Wolf, C., Newsome, T. M., Galetti, M., Alamgir, M., Crist, E., … Laurance, W. F. (2017). World scientists’ warning to humanity: A second notice. BioScience, bix125.  https://doi.org/10.1093/biosci/bix125.
  80. Robinson, S. A., & Rai, V. (2015). Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach. Applied Energy, 151, 273–284.  https://doi.org/10.1016/j.apenergy.2015.04.071.CrossRefGoogle Scholar
  81. Scott, S. M., Middleton, C. E., & Bodine, E. N. (2019). An agent-based model of the spatial distribution and density of the Santa Cruz Island Fox. In Handbook of statistics (1st ed., Vol. 40).  https://doi.org/10.1016/bs.host.2018.10.001.
  82. Shaker, R. R. (2015). The well-being of nations: An empirical assessment of sustainable urbanization for Europe. International Journal of Sustainable Development and World Ecology, 22(5), 375–387.  https://doi.org/10.1080/13504509.2015.1055524.CrossRefGoogle Scholar
  83. Tan, R., Liu, Y., Zhou, K., Jiao, L., & Tang, W. (2015). A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Computers, Environment and Urban Systems, 49, 15–29.  https://doi.org/10.1016/j.compenvurbsys.2014.09.001.CrossRefGoogle Scholar
  84. Torrens, P. M. (2015). Intertwining agents and environments. Environmental Earth Sciences, 74(10), 7117–7131.  https://doi.org/10.1007/s12665-015-4738-3.CrossRefGoogle Scholar
  85. Tucnik, P., Nachazel, T., Cech, P., & Bures, V. (2018). Comparative analysis of selected path-planning approaches in large-scale multi-agent-based environments. Expert Systems with Applications, 113, 415–427.  https://doi.org/10.1016/j.eswa.2018.07.001.CrossRefGoogle Scholar
  86. UN. (2007). Indicators of sustainable development: Guidelines and methodologies (3rd ed.). Retrieved from https://sustainabledevelopment.un.org/content/documents/guidelines.pdf.
  87. UNFCCC. (2015). Paris agreement. Retrieved from https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
  88. Vahidnia, M. H., Alesheikh, A. A., & Alavipanah, S. K. (2015). A multi-agent architecture for geosimulation of moving agents. Journal of Geographical Systems, 17.  https://doi.org/10.1007/s10109-015-0218-2.
  89. Vaz, E. (2016). The future of landscapes and habitats: The regional science contribution to the understanding of geographical space. Habitat International, 51, 70–78.  https://doi.org/10.1016/j.habitatint.2015.10.004.CrossRefGoogle Scholar
  90. Vaz, E., Cabral, P., Caetano, M., Nijkamp, P., & Painho, M. (2012). Urban heritage endangerment at the interface of future cities and past heritage: A spatial vulnerability assessment. Habitat International, 36(2), 287–294.  https://doi.org/10.1016/J.HABITATINT.2011.10.007.CrossRefGoogle Scholar
  91. Vaz, E., Kourtit, K., Nijkamp, P., & Painho, M. (2015). Spatial analysis of sustainability of urban habitats, introduction. Habitat International, 45, 71.  https://doi.org/10.1016/j.habitatint.2014.06.029.CrossRefGoogle Scholar
  92. Victor, D. G., Zhou, D., Ahmed, E. H. M., Dadhich, P. K., Olivier, J. G. J., Rogner, H.-H., … Yamaguchi, M. (2014). Introductory chapter. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, … J. C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
  93. Walker, P. (2017). Sustainability: a discipline and a political agenda? Environmental Hazards, 16(2), 93–98.  https://doi.org/10.1080/17477891.2017.1296810.CrossRefGoogle Scholar
  94. Widener, M. J., Horner, M. W., & Ma, K. (2015). Positioning disaster relief teams given dynamic service demand: A hybrid agent-based and spatial optimization approach. Transactions in GIS, 19(2), 279–295.  https://doi.org/10.1111/tgis.12092.CrossRefGoogle Scholar
  95. Wirth, E., & Szabó, G. (2018). Overlap-avoiding Tickmodel: an agent- and GIS-based method for evacuation simulations. Periodica Polytechnica Civil Engineering, 62(1), 72.  https://doi.org/10.3311/ppci.10823.CrossRefGoogle Scholar
  96. WWF. (2016). Living planet report 2016. Risk and resilience in a new era. Retrieved from http://awsassets.panda.org/downloads/lpr_living_planet_report_2016.pdf.
  97. Yan, Z., Xia, L., & Xiang, W. (2014). Landscape and urban planning analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landscape and Urban Planning, 130, 184–200.  https://doi.org/10.1016/j.landurbplan.2014.05.006.CrossRefGoogle Scholar
  98. Yang, Y., Mao, L., & Metcalf, S. S. (2019). Diffusion of hurricane evacuation behavior through a home-workplace social network: A spatially explicit agent-based simulation model. Computers, Environment and Urban Systems, 74(June 2018), 13–22.  https://doi.org/10.1016/j.compenvurbsys.2018.11.010.
  99. Zidar, K., Bartrand, T. A., Loomis, C. H., McAfee, C. A., Geldi, J. M., Rigall, G. J., & Montalto, F. (2017). Maximizing green infrastructure in a Philadelphia neighborhood. Urban Planning, 2(4), 115.  https://doi.org/10.17645/up.v2i4.1039.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tanya Cristina Esteves
    • 1
    Email author
  • Fátima Lopes Alves
    • 1
  • Eric Vaz
    • 2
  1. 1.Department of Environment and Planning & CESAM (Centre for Environmental and Marine Studies)University of AveiroAveiroPortugal
  2. 2.Department of Geography and Environmental StudiesRyerson UniversityTorontoCanada

Personalised recommendations