Application to the Analysis of Heat Exchanger Networks

  • Dániel LeitoldEmail author
  • Ágnes Vathy-Fogarassy
  • János Abonyi
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


This work proposes a network science-based analysis tool for the qualification of controllability and observability of HENs. With the proposed methodology, the main characteristics of HEN design methods are determined, the effect of structural properties of HENs on their dynamical behaviour is revealed, and the potentials of the network-based HEN representations are discussed. Our findings are based on the systematic analysis of almost 50 benchmark problems related to 20 different design methodologies.


Heat exchanger network Structural controllability Structural observability Operability Network science Sensor and actuator placement 


  1. 1.
    Ahmad, S., Smith, R.: Targets and design for minimum number of shells in heat exchanger networks. Chem. Eng. Res. Des. 67(5), 481–494 (1989)Google Scholar
  2. 2.
    Ahmad, S., Linnhoff, B.: Supertargeting: different process structures for different economics. J. Energy Resour. Technol. 111(3), 131–136 (1989)CrossRefGoogle Scholar
  3. 3.
    Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10(5), 053039 (2008)CrossRefGoogle Scholar
  4. 4.
    Bagajewicz, M.J., Manousiouthakis, V.: Mass/heat-exchange network representation of distillation networks. AIChE J 38(11), 1769–1800 (1992)CrossRefGoogle Scholar
  5. 5.
    Bagajewicz, M.J., Pham, R., Manousiouthakis, V.: On the state space approach to mass/heat exchanger network design. Chem. Eng. Sci. 53(14), 2595–2621 (1998)CrossRefGoogle Scholar
  6. 6.
    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89(5), 399–404 (1982)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bonchev, D., Buck, G.A.: Quantitative measures of network complexity. Complexity in Chemistry, Biology, and Ecology, pp. 191–235. Springer, Springer Science & Business Media, USA (2005)Google Scholar
  8. 8.
    Calandranis, J., Stephanopoulos, G.: Structural operability analysis of heat exchanger networks. Chem. Eng. Res. Des. (Icheme), 64(5), 347–364 (1986)Google Scholar
  9. 9.
    Chen, Y., Grossmann, I.E., Miller, D.C.: Computational strategies for large-scale milp transshipment models for heat exchanger network synthesis. Comput. Chem. Eng. 82, 68–83 (2015)Google Scholar
  10. 10.
    Chen, Y., Grossmann, I.E., Miller, D.C.: Large-scale milp transshipment models for heat exchanger network synthesis. Available from CyberInfrastructure for MINLP [, a collaboration of Carnegie Mellon University and IBM Research] at: (2015)
  11. 11.
    Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidlines for Process Integration and Product Improvement. Addison-Wesley Longman Publishing Co., Inc., USA (2003)Google Scholar
  12. 12.
    Ciric, A.R., Floudas, C.A.: A retrofit approach for heat exchanger networks. Comput. Chem. Eng. 13(6), 703–715 (1989)CrossRefGoogle Scholar
  13. 13.
    Colberg, R.D., Morari, M.: Area and capital cost targets for heat exchanger network synthesis with constrained matches and unequal heat transfer coefficients. Comput. Chem. Eng. 14(1), 1–22 (1990)CrossRefGoogle Scholar
  14. 14.
    Daoutidis, P., Kravaris, C.: Structural evaluation of control configurations for multivariable nonlinear processes. Chem. Eng. Sci. 47(5), 1091–1107 (1992)Google Scholar
  15. 15.
    Dehmer, M., Kraus, V., Emmert-Streib, F., Pickl, S.: Quantitative Graph Theory. CRC Press, USA (2014)Google Scholar
  16. 16.
    Dolan, W.B., Cummings, P.T., Le Van, M.D.: Algorithmic efficiency of simulated annealing for heat exchanger network design. Comput. Chem. Eng. 14(10), 1039–1050 (1990)CrossRefGoogle Scholar
  17. 17.
    Düştegör, D., Frisk, E., Cocquempot, V., Krysander, M., Staroswiecki, M.: Structural analysis of fault isolability in the damadics benchmark. Control Eng. Pract. 14(6), 597–608 (2006)Google Scholar
  18. 18.
    Escobar, M., Trierweiler, J.O., Grossmann, I.E.: Simultaneous synthesis of heat exchanger networks with operability considerations: flexibility and controllability. Comput. Chem. Eng. 55, 158–180 (2013)Google Scholar
  19. 19.
    Farhanieh, B., Sunden, B.: Analysis of an existing heat exchanger network and effects of heat pump installations. Heat Recover. Syst. CHP 10(3), 285–296 (1990)Google Scholar
  20. 20.
    Furman, K.C., Sahinidis, N.V.: Approximation algorithms for the minimum number of matches problem in heat exchanger network synthesis. Ind. Eng. Chem. Res. 43(14), 3554–3565 (2004)Google Scholar
  21. 21.
    Grossmann, I.E., Sargent, R.W.H.: Optimum design of heat exchanger networks. Comput. Chem. Eng. 2(1), 1–7 (1978)Google Scholar
  22. 22.
    Gundersen, T., Grossmann, I.E.: Improved optimization strategies for automated heat exchanger network synthesis through physical insights. Comput. Chem. Eng. 14(9), 925–944 (1990)Google Scholar
  23. 23.
    Hall, S.G., Ahmad, S., Smith, R.: Capital cost targets for heat exchanger networks comprising mixed materials of construction, pressure ratings and exchanger types. Comput. Chem. Eng. 14(3), 319–335 (1990)CrossRefGoogle Scholar
  24. 24.
    Jamaluddin, K., Wan Alwi, S.R., Manan, Z.A., Klemes, JJ.: Pinch analysis methodology for trigeneration with energy storage system design. Chem. Eng. Tran. 70, 1885–1890 (2018)Google Scholar
  25. 25.
    Kemp, I.C.: Pinch analysis and process integration: a user guide on process integration for the efficient use of energy. Elsevier, USA (2011)Google Scholar
  26. 26.
    Klemes, J.J.: Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Elsevier, UK (2013)Google Scholar
  27. 27.
    Klemes, J.J., Varbanov, P.S., Walmsley, T.G., Jia, X.: New directions in the implementation of pinch methodology (pm). Renew. Sustain. Energy Rev. 98, 439– 468 (2018)Google Scholar
  28. 28.
    Latva-Koivisto, A.M.: Finding a complexity measure for business process models. Helsinki University of Technology, Systems Analysis Laboratory (2001)Google Scholar
  29. 29.
    Lee, K.-F., Masso, A.H., Rudd, D.F.: Branch and bound synthesis of integrated process designs. Ind. Eng. Chem. Fundam. 9(1), 48–58 (1970)Google Scholar
  30. 30.
    Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Controllability and observability in complex networks-the effect of connection types. Sci. Rep. 7, 151 (2017)Google Scholar
  31. 31.
    Leitold, D., Vathy-Fogarassy, A., Abonyi, J.: Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree. Sensors 18(9), 3096 (2018)Google Scholar
  32. 32.
    Leitold, Dá., Vathy-Fogarassy, Á., Abonyi, J.: Evaluation of the complexity, controllability and observability of heat exchanger networks based on structural analysis of network representations. Energies 12(3), 513 (2019)Google Scholar
  33. 33.
    Letsios, D., Kouyialis, G., Misener, R.: Heuristics with performance guarantees for the minimum number of matches problem in heat recovery network design. Comput. Chem. Eng. 113, 57–85 (2018)Google Scholar
  34. 34.
    Linnhoff, B., Ahmad, S.: Supertargeting: optimum synthesis of energy management systems. J. Energy Resour. Technol. 111(3), 121–130 (1989)CrossRefGoogle Scholar
  35. 35.
    Linnhoff, B., Flower, J.R.: Synthesis of heat exchanger networks: I. systematic generation of energy optimal networks. AIChE J 24(4), 633–642 (1978)Google Scholar
  36. 36.
    Linnhoff, B., Hindmarsh, E.: The pinch design method for heat exchanger networks. Chem. Eng. Sci. 38(5), 745–763 (1983)Google Scholar
  37. 37.
    Linnhoff, B., Mason, D.R., Wardle, I.: Understanding heat exchanger networks. Comput. Chem. Eng. 3(1–4), 295–302 (1979)Google Scholar
  38. 38.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167 (2011)Google Scholar
  39. 39.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Observability of complex systems. Proc. Natl. Acad. Sci. 110(7), 2460–2465 (2013)Google Scholar
  40. 40.
    Masso, A.H., Rudd, D.F.: The synthesis of system designs. ii. heuristic structuring. AIChE J 15(1), 10–17 (1969)Google Scholar
  41. 41.
    Miranda, C.B., Costa Costa, C.B.B., Andrade, C.M.G., Ravagnani, M.A.S.S.: Controllability and resiliency analysis in heat exchanger networks. Chem. Eng. Trans. 61, 1609–1614 (2017)Google Scholar
  42. 42.
    Mocsny, D., Govind, R.: Decomposition strategy for the synthesis of minimum-unit heat exchanger networks. AIChE J. 30(5), 853–856 (1984)Google Scholar
  43. 43.
    Nishida, N., Stephanopoulos, G., Westerberg, A.W.: A review of process synthesis. AIChE J. 27(3), 321–351 (1981)Google Scholar
  44. 44.
    Pho, T.K., Lapidus, L.: Topics in computer-aided design: Part ii. synthesis of optimal heat exchanger networks by tree searching algorithms. AIChE J. 19(6), 1182–1189 (1973)Google Scholar
  45. 45.
    Polley, G.T., Heggs, P.J.: Don’t let the pinch pinch you. Chem. Eng. Prog. 95(12), 27–36 (1999)Google Scholar
  46. 46.
    Saboo, A.K., Morari, M., Woodcock, D.C.: Design of resilient processing plants-viii. a resilience index for heat exchanger networks. Chem. Eng. Sci. 40(8), 1553–1565 (1985)Google Scholar
  47. 47.
    Shenoy, U.V.: Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Professional Publishing, USA (1995)Google Scholar
  48. 48.
    Svensson, E., Eriksson, K., Bengtsson, F., Wik, T.: Design of heat exchanger networks with good controllability. Technical Report, CIT Industriell Energi AB, Sweden (2018)Google Scholar
  49. 49.
    Tantimuratha, L., Kokossis, A.C., Müller, F.U.: The heat exchanger network design as a paradigm of technology integration. Appl. Therm. Eng. 20(15–16), 1589–1605 (2000)CrossRefGoogle Scholar
  50. 50.
    Trivedi, K.K., O’Neill, B.K., Roach, J.R.: Synthesis of heat exchanger networks featuring multiple pinch points. Comput. Chem. Eng. 13(3), 291–294 (1989)CrossRefGoogle Scholar
  51. 51.
    Trivedi, K.K., O’Neill, B.K., Roach, J.R., Wood, R.M.: Systematic energy relaxation in mer heat exchanger networks. Comput. Chem. Eng. 14(6), 601–611 (1990)CrossRefGoogle Scholar
  52. 52.
    Varbanov, P.S., Walmsley, T.G., Klemes, J.J., Wang, Y., Jia, X.-X.: Footprint reduction strategy for industrial site operation. Chem. Eng. Trans. 67, 607–612 (2018)Google Scholar
  53. 53.
    Varga, E.I., Hangos, K.M.: The effect of the heat exchanger network topology on the network control properties. Control Eng. Pract. 1(2), 375–380 (1993)CrossRefGoogle Scholar
  54. 54.
    Varga, E.I, Hangos, K.M., Szigeti, F.: Controllability and observability of heat exchanger networks in the time-varying parameter case. Control Eng. Pract. 3(10), 1409–1419 (1995)Google Scholar
  55. 55.
    Volkmann, L.: Estimations for the number of cycles in a graph. Period. Math. Hung. 33(2), 153–161 (1996)Google Scholar
  56. 56.
    Westphalen, D.L., Young, B.R., Svrcek, W.Y.: A controllability index for heat exchanger networks. Ind. Eng. Chem. Res. 42(20), 4659–4667 (2003)Google Scholar
  57. 57.
    Wood, R.M., Suaysompol, K., O’Neill, B.K., Roach, J.R., Trivedi, K.K.: A new option for heat exchanger network design. Chem. Eng. Prog. 87(9), 38–43 (1991)Google Scholar
  58. 58.
    Wood, R.M., Wilcox, R.J., Grossmann, I.E.: A note on the minimum number of units for heat exchanger network synthesis. Chem. Eng. Commun. 39(1-6), 371–380 (1985)Google Scholar
  59. 59.
    Yu, H., Fang, H., Yao, P., Yuan, Y.: A combined genetic algorithm/simulated annealing algorithm for large scale system energy integration. Comput. Chem. Eng. 24(8), 2023–2035 (2000)Google Scholar
  60. 60.
    Zafiriou, E.: The Integration of Process Design and Control. Pergamon, UK (1994)Google Scholar
  61. 61.
    Zhelev, T.K., Varbanov, P.S., Seikova, I.: Hen’s operability analysis for better process integrated retrofit. Hung. J. Ind. Chem. 26(2), 81–88 (1998)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  2. 2.MTA-PE Lendület Complex Systems Monitoring Research GroupUniversity of PannoniaVeszprémHungary

Personalised recommendations