Advertisement

Reduction of Relative Degree by Optimal Control and Sensor Placement

  • Dániel LeitoldEmail author
  • Ágnes Vathy-Fogarassy
  • János Abonyi
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

However, the resulting proportions of driver and sensor nodes are particularly small when compared to the size of the system, and although structural controllability and observability is ensured, the system demands additional drivers and sensors to provide the small relative degree needed for fast and robust process monitoring and control. In this chapter, a centrality measures-based, two set covering-based and two clustering and simulated annealing-based methods are proposed to assign additional drivers and sensors to the dynamical systems.

Keywords

Sensor placement Network science Fuzzy clustering Simulated annealing Structural observability Relative degree Network segmentation 

References

  1. 1.
    Aguirre-Salas, L., Begovich, O., Ramirez-trevino, A.: Sensor assignment for observability in interpreted petri nets. IFAC Proc. Vol. 37(18), 441–446 (2004)CrossRefGoogle Scholar
  2. 2.
    Bagajewicz, M.J.: Design and retrofit of sensor networks in process plants. AIChE J. 43(9), 2300–2306 (1997)Google Scholar
  3. 3.
    Berger-Wolf, T.Y., Hart, W.E., Saia, J.: Discrete sensor placement problems in distribution networks. Math. Comput. Model. 42(13), 1385–1396 (2005)Google Scholar
  4. 4.
    Blanloeuil, P., Nurhazli, N.A.E., Veidt, M.: Particle swarm optimization for optimal sensor placement in ultrasonic shm systems. In: Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016, vol. 9804, p. 98040E. International Society for Optics and Photonics (2016)Google Scholar
  5. 5.
    Boukhobza, T., Hamelin, F.: State and input observability recovering by additional sensor implementation: a graph-theoretic approach. Automatica 45(7), 1737–1742 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carballido, J.A., Ponzoni, I., Brignole, N.B.: Cgd-ga: a graph-based genetic algorithm for sensor network design. Inf. Sci. 177(22), 5091–5102 (2007)Google Scholar
  7. 7.
    Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems (2002)Google Scholar
  8. 8.
    Chiu, P.L., Lin, F.Y.S.: A simulated annealing algorithm to support the sensor placement for target location. In: 2004 Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 867–870. IEEE (2004)Google Scholar
  9. 9.
    Chmielewski, D.J., Palmer, T., Manousiouthakis, V.: On the theory of optimal sensor placement. AIChE J. 48(5), 1001–1012 (2002)Google Scholar
  10. 10.
    Shu-Chuan, C., Roddick, J.F., Pan, J-S.: A comparative study and extension to K-medoids algorithms, Contemporary Development Company (2001)Google Scholar
  11. 11.
    Daoutidis, P., Kravaris, C.: Structural evaluation of control configurations for multivariable nonlinear processes. Chem. Eng. Sci. 47(5), 1091–1107 (1992)CrossRefGoogle Scholar
  12. 12.
    Düştegör, D., Frisk, E., Cocquempot, V., Krysander, M., Staroswiecki, M.: Structural analysis of fault isolability in the damadics benchmark. Control Eng. Pract. 14(6), 597–608 (2006)CrossRefGoogle Scholar
  13. 13.
    Gleich, D.: Matlabbgl. a matlab graph library. Institute for Computational and Mathematical Engineering, Stanford University (2008)Google Scholar
  14. 14.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)Google Scholar
  15. 15.
    Gori, F., Folino, G., Jetten, M.S.M., Elena Marchiori. Mtr: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics 27(2), 196–203 (2010)Google Scholar
  16. 16.
    Heeb, H., Ruehli, A.E., Eric Bracken, J., Rohrer, R.A.: Three dimensional circuit oriented electromagnetic modeling for vlsi interconnects. In: IEEE 1992 International Conference on Computer Design: VLSI in Computers and Processors, 1992. ICCD’92. Proceedings, pp. 218–221. IEEE (1992)Google Scholar
  17. 17.
    Isidori, A.: Nonlinear Control Systems. Springer Science & Business Media, Berlin (2013)Google Scholar
  18. 18.
    Király, A., Vathy-Fogarassy, Á., Abonyi, J.: Geodesic distance based fuzzy c-medoid clustering-searching for central points in graphs and high dimensional data. Fuzzy Sets Syst. 286, 157–172 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Controllability and observability in complex networks-the effect of connection types. Sci. Rep. 7, 151 (2017)CrossRefGoogle Scholar
  20. 20.
    Leitold, D., Vathy-Fogarassy, A., Abonyi, J.: Design-oriented structural controllability and observability analysis of heat exchanger networks. Chem. Eng. Trans. 70, 595–600 (2018)zbMATHGoogle Scholar
  21. 21.
    Leitold, D., Vathy-Fogarassy, Á., Abonyi, J.: Network distance-based simulated annealing and fuzzy clustering for sensor placement ensuring observability and minimal relative degree. Sensors 18(9), 3096 (2018)Google Scholar
  22. 22.
    Liu, X., Mo, Y., Pequito, S., Sinopoli, B., Kar, S., Aguiar, A.P.: Minimum robust sensor placement for large scale linear time-invariant systems: a structured systems approach. IFAC Proc. Vol. 46(27), 417–424 (2013)Google Scholar
  23. 23.
    Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Observability of complex systems. Proc. Natl. Acad. Sci. 110(7), 2460–2465 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mamano, N., Hayes, W.: Sana: simulated annealing network alignment applied to biological networks (2016). arXiv:1607.02642
  25. 25.
    Martin, O.C., Otto, S.W.: Combining simulated annealing with local search heuristics. Ann. Oper. Res. 63(1), 57–75 (1993)Google Scholar
  26. 26.
    Odabasioglu, A., Celik, M., Pileggi, L.T.: Prima: passive reduced-order interconnect macromodeling algorithm. In: Proceedings of the 1997 IEEE/ACM International Conference on Computer-Aided Design, pp. 58–65. IEEE Computer Society (1997)Google Scholar
  27. 27.
    Papadimitriou, C., Lombaert, G.: The effect of prediction error correlation on optimal sensor placement in structural dynamics. Mech. Syst. Signal Process. 28, 105–127 (2012)CrossRefGoogle Scholar
  28. 28.
    Papadopoulou, M., Raphael, B., Smith, I.F.C., Sekhar, C.: Hierarchical sensor placement using joint entropy and the effect of modeling error. Entropy 16(9), 5078–5101 (2014)Google Scholar
  29. 29.
    Qin, B.Y., Lin, X.K.: Optimal sensor placement based on particle swarm optimization. In: Advanced Materials Research, vol. 271, pp. 1108–1113. Trans Tech Publications (2011)Google Scholar
  30. 30.
    Rosich, A., Sarrate, R., Puig, V., Escobet, T.: Efficient optimal sensor placement for model-based fdi using an incremental algorithm. In: 46th IEEE Conference on Decision and Control, pp. 2590–2595. IEEE (2007)Google Scholar
  31. 31.
    Samora, I., Franca, M.J., Schleiss, A.J., Ramos, H.M.: Simulated annealing in optimization of energy production in a water supply network. Water Res. Manag. 30(4), 1533–1547 (2016)Google Scholar
  32. 32.
    Padula, S.L.: and Kincaid Rex K. Optimization strategies for sensor and actuator placement. Technical report, National Aeronautics and Space Administration, NASA (1999)Google Scholar
  33. 33.
    Torres-Jimenez, J., Izquierdo-Marquez, I., Garcia-Robledo, A., Gonzalez-Gomez, A., Bernal, J., Kacker, R.N.: A dual representation simulated annealing algorithm for the bandwidth minimization problem on graphs. Inf. Sci. 303, 33–49 (2015)Google Scholar
  34. 34.
    Varga, E.I., Hangos, K.M., Szigeti, F.: Controllability and observability of heat exchanger networks in the time-varying parameter case. Control Eng. Pract. 3(10), 1409–1419 (1995)Google Scholar
  35. 35.
    Watson, J-P., Hart, W.E., Berry, J.W.: Scalable high-performance heuristics for sensor placement in water distribution networks. In: Impacts of Global Climate Change, pp. 1–12. American Society of Civil Engineers (2005)Google Scholar
  36. 36.
    Westphalen, D.L., Young, B.R., Svrcek, W.Y.: A controllability index for heat exchanger networks. Ind. Eng. Chem. Res. 42(20), 4659–4667 (2003)Google Scholar
  37. 37.
    Worden, K., Burrows, A.P.: Optimal sensor placement for fault detection. Eng. Struct. 23(8), 885–901 (2001)CrossRefGoogle Scholar
  38. 38.
    Yuen, K.-V., Kuok, S.-C.: Efficient bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems. Earthq. Eng. Struct. Dyn. 44(5), 757–774 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhang, X.-X., Li, H.-X., Qi, C.-K.: Spatially constrained fuzzy-clustering-based sensor placement for spatiotemporal fuzzy-control system. IEEE Trans. Fuzzy Syst. 18(5), 946–957 (2010)CrossRefGoogle Scholar
  40. 40.
    Xun, Z., Juelong, L., Jianchun, X., Ping, W., Qiliang, Y., Ronghao, W., Can, H.: Optimal sensor placement for latticed shell structure based on an improved particle swarm optimization algorithm. Math. Probl. Eng. 2014 (2014)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Systems TechnologyUniversity of PannoniaVeszprémHungary
  2. 2.MTA-PE Lendület Complex Systems Monitoring Research GroupUniversity of PannoniaVeszprémHungary

Personalised recommendations