Advertisement

What Controls Air-Sea Gas Exchange at Extreme Wind Speeds? Evidence from Laboratory Experiments

  • Bernd JähneEmail author
Chapter
  • 42 Downloads

Abstract

In 1983 Ed Monahan presented the paper “The role of oceanic whitecaps in air-sea gas exchange” at the first International Symposium on Gas Transfer at Water Surfaces. He predicted a steep increase in the gas transfer velocities once the whitecaps can act as low impedance vents. He also postulated that the main role of bubbles is not their additional surface for exchange but that bubbles act as “stirring devices”. In 1983 no suitable experimental data was available to test this simple but keen and visionary idea. Now more than 30 years later laboratory measurements in high wind speed facilities show that a new regime is established at wind speeds beyond 35 m/s, in which the gas transfer increases very steeply with wind speed. This steep increase is independent of the additional flux across bubble surfaces, because it was also observed for gases with moderate solubility including DMS. In fresh water bubble-induced gas transfer is not dominant even at hurricane wind speeds. For low solubility gases such as SF6 and He, an enhancement of at most 25% was found. In sea water transfer across bubble surfaces contributes at most 2/3 of the flux.

Notes

Acknowledgements

The author would like to thank all members of his research group at Heidelberg University who participated in the realization of the laboratory experiments or the evaluation of the data: Kerstin Krall, Sonja Friman, Angelika Klein, Leonie Flothow, Maximilian Bopp, and Wolfgang Mischler. He is equally grateful for the help of all cooperation partners, who made the measurements at the facilities in Kyoto, Marseille, and Miami facilities possible, among others Satoru Komori from Kyoto University, Brian Haus from RSMAS, Miami, Guillemette Caulliez from MIO, Marseille and Yuliya Troitskaya from the Applied Physics Institute in Nizhny Novgorod. Partial financial support for this research by the German Science Foundation (DFG), projects JA395/17-1 and JA395/17-2 “Air-Sea Gas Exchange at High Wind Speeds” is gratefully acknowledged.

References

  1. Asher, W., & Wanninkhof, R. (1998). The effect of bubble-mediated gas transfer on purposeful dual- gaseous tracer experiments. Journal of Geophysical Research, 103.  https://doi.org/10.1029/98JC00245.
  2. Asher, W. E., Higgins, B. J., Karle, L. M., Farley, P. J., Sherwood, C. R., Gardiner, W. W., Wan-ninkhof, R., Chen, H., Lantry, T., Steckley, M., Monahan, E. C., Wang, Q., & Smith, P. M. (1995). Measurement of gas transfer, whitecap coverage, and brightness temperature in a surf pool: An overview of WABEX-93. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer, selected papers, 3rd international symposium On air-water gas transfer (pp. 205–216). Hanau: AEON.  https://doi.org/10.5281/zenodo.10571.CrossRefGoogle Scholar
  3. Bell, T. G., Bruyn, W. D., Miller, S. D., Ward, B., Christensen, K. H., & Saltzman, E. S. (2013). Air-sea dimethylsulfide (dms) gas transfer in the North Atlantic: Evidence for limited interfacial gas exchange at high wind speed. Atmospheric Chemistry and Physics, 13, 11073–11087.  https://doi.org/10.5194/acp-13-11073-2013.CrossRefGoogle Scholar
  4. Bell, T. G., Bruyn, W. D., Marandino, C. A., Miller, S. D., Law, C. S., Smith, M. J., & Saltzman, E. S. (2015). Dimethylsulfide gas transfer coefficients from algal blooms in the southern ocean. Atmospheric Chemistry and Physics, 15, 1783–1794.  https://doi.org/10.5194/acp-15-1783-2015.CrossRefGoogle Scholar
  5. Bender, M. L., Kinter, S., Cassar, N., & Wanninkhof, R. (2011). Evaluating gas transfer velocity param- eterizations using upper ocean radon distributions. Journal of Geophysical Research, 116(C2), C02010.  https://doi.org/10.1029/2009JC005805.CrossRefGoogle Scholar
  6. Borges, A.V., Wanninkhof, R. (eds.): 5th international symposium on gas transfer at water surfaces, Journal of marine systems,Amsterdam : Elsevier vol. 66, 1–4 (2007).Google Scholar
  7. Brutsaert, W., & Jirka, G. H. (Eds.). (1984). Gas transfer at water surfaces. Dordrecht: Reidel.  https://doi.org/10.1007/978-94-017-1660-4.CrossRefGoogle Scholar
  8. de Leeuw, G., Kunz, G.J., Caulliez, G., Jaouen, L., Badulin, S., Woolf, D.K., Bowyer, P., Leifer, I. A., Nightingale, P., Liddicoat, M., Rhee, T. S., Andreae, M. O., Larsen, S., Hansen, F. A., & Lund, S. W. (1999). Breaking waves and air-sea gas transfer (LUMINY). Final report. Tech. Rep. FEL-98-C122, TNO FEL – Netherlands Organisation for Applied Scientific Research – Physics and Electronics Laboratory.Google Scholar
  9. de Leeuw, G., Kunz, G. J., Caulliez, G., Woolf, D. K., Bowver, P., Leifer, I., Nightingale, P., Liddicoat, M., Rhee, T., Andreae, M. O., Larsen, S., Hansen, F. A., & Lun, S. (2002). LUMINY - an overview. In E. Saltzman, M. Donelan, W. Drennan, & R. Wanninkhof (Eds.), Gas transfer at water surfaces, geophysical monograph (Vol. 127, pp. 291–294). American Geophysical Union.  https://doi.org/10.1029/GM127p0291.
  10. Donelan, M. A., Drennan, W. M., Saltzman, E. S., & Wanninkhof, R. (Eds.). (2002). Gas Transfer at Water Surfaces. American Geophysical Union.  https://doi.org/10.1029/GM127.
  11. Flothow, L. (2017). Bubble characteristics from breaking waves in fresh water and simulated seawater. Master’s thesis, Institut für Umweltphysik, Universität Heidelberg, Germany.  https://doi.org/10.11588/heidok.00023754
  12. Garbe, C. S., Rutgersson, A., Boutin, J., Delille, B., Fairall, C. W., Gruber, N., Hare, J., Ho, D., Johnson, M., de Leeuw, G., Nightingale, P., Pettersson, H., Piskozub, J., Sahlee, E., Tsai, W., Ward, B., Woolf, D. K., & Zappa, C. (2014). Transfer across the air-sea interface. In P. S. Liss & M. T. Johnson (Eds.), Ocean-atmosphere interactions of gases and particles (pp. 55–112). Springer.  https://doi.org/10.1007/978-3-642-25643-1_2.
  13. Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harville, M., & Hill, P. (2006). Measurements of air-sea gas exchange at high wind speeds in the southern ocean: Implications for global parameteriza- tions. Geophysical Research Letters, 33, 16611–16616.  https://doi.org/10.1029/2006GL026817.CrossRefGoogle Scholar
  14. Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., & Sullivan, K. F. (2011). Toward a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with 3 He/SF6 during the Southern Ocean Gas Exchange Experiment. Journal of Geophysical Research, 116, C00F04.  https://doi.org/10.1029/2010JC006854.CrossRefGoogle Scholar
  15. Iwano, K., Takagaki, N., Kurose, R., & Komori, S. (2013). Mass transfer velocity across the breaking air-water interface at extremely high wind speeds. Tellus B, 65, 21341.  https://doi.org/10.3402/tellusb.v65i0.21341.CrossRefGoogle Scholar
  16. Iwano, K., Takagaki, N., Kurose, R., & Komori, S. (2014). Erratum: Mass transfer velocity across the breaking air-water interface at extremely high wind speeds. Tellus B, 66, 25233.  https://doi.org/10.3402/tellusb.v66.25233.CrossRefGoogle Scholar
  17. Jähne, B. (1982). Trockene Deposition von Gasen über Wasser (Gasaustausch). In D. Flothmann (Ed.), Austausch von Luftverunreinigungen an der Grenzfläche Atmosphäre/Erdoberfläche, Zwischenbericht für das Umweltbundesamt zum Teilprojekt 1: Deposition von Gasen, BleV- R-64.284-2. Frankfurt: Battelle Institut.  https://doi.org/10.5281/zenodo.10278.CrossRefGoogle Scholar
  18. Jähne, B. (2019). Air-sea gas exchange. In Encyclopedia of ocean sciences (3rd ed.). Academic Press. URL: https://www.elsevier.com/books/encyclopedia-of-ocean-sciences/cochran/978-0-12-813081-0. In press.
  19. Jähne, B., & Monahan, E. C. (1995). Air-water gas transfer — selected papers from the third international symposium on air-water gas transfer. Hanau: AEON.  https://doi.org/10.11588/heidok.00017063.CrossRefGoogle Scholar
  20. Jähne, B., Huber, W., Dutzi, A., Wais, T., & Ilmberger, J. (1984a). Wind/wave-tunnel experiments on the Schmidt number and wave field dependence of air-water gas exchange. In W. Brutsaert & G. H. Jirka (Eds.), Gas transfer at water surfaces (pp. 303–309). Hingham: Reidel.  https://doi.org/10.1007/978-94-017-1660-4_28.CrossRefGoogle Scholar
  21. Jähne, B., Wais, T., & Barabas, M. (1984b). A new optical bubble measuring device; a simple model for bubble contribution to gas exchange. In W. Brutsaert & G. H. Jirka (Eds.), Gas transfer at water surfaces (pp. 237–246). Hingham: Reidel.  https://doi.org/10.1007/978-94-017-1660-4_22.CrossRefGoogle Scholar
  22. Jähne, B., Heinz, G., & Dietrich, W. (1987). Measurement of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research, 92(C10), 10,767–10,776.  https://doi.org/10.1029/JC092iC10p10767.CrossRefGoogle Scholar
  23. Jessup, A. T., & Asher, W. E. (Eds.). (2016). 7th international symposium on gas transfer at water surfaces (Vol. 35). IOP Publishing.  https://doi.org/10.1088/1755-1315/35/1/011001.
  24. Kiefhaber, D., Reith, S., Rocholz, R., & Jähne, B. (2014). High-speed imaging of short wind waves by shape from refraction. Journal of the European Optical Society-Rapid Publications, 9, 14015.  https://doi.org/10.2971/jeos.2014.14015.CrossRefGoogle Scholar
  25. Komori, S., McGillis, W., & Kurose, R. (Eds.). (2011). Gas transfer at water surfaces 2010. Kyoto: Kyoto Univ Press. URL: http://hdl.handle.net/2433/156156.Google Scholar
  26. Krall, K. E., & Jähne, B. (2014). First laboratory study of air-sea gas exchange at hurricane wind speeds. Ocean Science, 10, 257–265.  https://doi.org/10.5194/os-10-257-2014.CrossRefGoogle Scholar
  27. Krall, K., Takagaki, N., Mischler, W., Klein, A., Flothow, L., Komori, S., & Jähne, B. (2016). In- vestigating the mechanisms of air-sea gas exchange at hurricane wind-speeds in wind-wave tunnel experiemnts. In Air-sea gas flux; progress and future prospects, IFREMER, Brest, September 6–9, 2016.  https://doi.org/10.5281/zenodo.321372
  28. Krall, K. E., Smith, A. W., Takagaki, N., & Jähne, B. (2019). Air-sea gas exchange at wind speeds up to 85 m s−1. Ocean Science, 15, 1783–1799,  https://doi.org/10.5194/os-15-1783-2019
  29. Kräuter, C. (2011). Aufteilung des Transferwiderstands zwischen Luft und Wasser beim Austausch flüchtiger Substanzen mittlerer Löslichkeit zwischen Ozean und Atmosphäre. Diplomarbeit, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg.  https://doi.org/10.11588/heidok.00013010
  30. Kräuter, C., Richter, K. E., Mesarchaki, E., Rocholz, R., Williams, J., & Jähne, B. (2012). Partitioning of the trasfer resistance between air and water. In SOLAS open science conference, Washington State, USA.  https://doi.org/10.5281/zenodo.12328
  31. Kunz, J., & Jähne, B. (2018). Investigating small scale air-sea exchange processes via thermography. Frontiers of Mechanical Engineering, 4.  https://doi.org/10.3389/fmech.2018.00004.
  32. Liss, P. S., & Merlivat, L. (1986). Air-sea gas exchange rates: Introduction and synthesis. In P. Buat-Menard (Ed.), The role of air-sea exchange in geochemical cycling (pp. 113–129). Boston: Reidel.  https://doi.org/10.1007/978-94-009-4738-2_5.CrossRefGoogle Scholar
  33. McGillis, W. R., Edson, J. B., Hare, J. E., & Fairall, C. W. (2001). Direct covariance air-sea CO2 fluxes. Journal of Geophysical Research, 106(C8), 16729–16745.  https://doi.org/10.1029/2000JC000506.CrossRefGoogle Scholar
  34. McNeil, C., & D’Asaro, E. (2007). Parameterization of air sea gas fluxes at extreme wind speeds. Journal of Marine Systems, 66, 110–121.  https://doi.org/10.1016/j.jmarsys.2006.05.013.CrossRefGoogle Scholar
  35. Mischler, W. (2014). Systematic measurements of bubble induced gas exchange for trace gases with low solubilities. Dissertation, Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg.  https://doi.org/10.11588/heidok.00017720
  36. Mischler, W., & Jähne, B. (2012). Optical measurements of bubbles and spray in wind/water facilities at high wind speeds. In 12th international triennial conference on liquid atomization and spray systems 2012, Heidelberg (ICLASS 2012).  https://doi.org/10.5281/zenodo.10957
  37. Monahan, E. C., & Spillane, M. C. (1984). The role of oceanic whitecaps in air-sea gas exchange. In W. Brutsaert & G. H. Jirka (Eds.), Gas transfer at water surfaces (pp. 495–503). Hingham: Reidel.  https://doi.org/10.1007/978-94-017-1660-4_45.CrossRefGoogle Scholar
  38. Naegler, T. (2009). Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus B, 61(2), 372–384.  https://doi.org/10.1111/j.1600-0889.2008.00408.x.CrossRefGoogle Scholar
  39. Nightingale, P. D., Liss, P. S., & Schlosser, P. (2000a). Measurements of air-sea gas transfer during an open ocean algal bloom. Geophysical Research Letters, 27, 2117–2120.  https://doi.org/10.1029/2000GL011541.CrossRefGoogle Scholar
  40. Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., & Upstill-Goddard, R. C. (2000b). In situ evaluation of air-sea gas exchange parameterization using novel conservation and volatile tracers. Global Biogeochemical Cycles, 14, 373–387.  https://doi.org/10.1029/1999GB900091.CrossRefGoogle Scholar
  41. Peng, T. H., Broecker, W. S., Mathieu, G. G., Li, Y. H., & Bainbridge, A. (1979). Radon evasion rates in the Atlantic and Pacific oceans as determined during the geosecs program. Journal of Geophysical Research, 84(C5), 2471–2487.  https://doi.org/10.1029/JC084iC05p02471.CrossRefGoogle Scholar
  42. Roether, W., & Kromer, B. (1984). Optimum application of the radon deficit method to obtain air–sea gas exchange rates. In W. Brutsaert & G. H. Jirka (Eds.), Gas transfer at water surfaces (pp. 447–457). Hingham: Reidel.  https://doi.org/10.1007/978-94-017-1660-4_41.CrossRefGoogle Scholar
  43. Sander, R. (2015). Compilation of henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15, 4399–4981.  https://doi.org/10.5194/acp-15-4399-2015.CrossRefGoogle Scholar
  44. Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., & Wanninkhof, R. (2007). Constraining global air-sea gas exchange for CO2 with recent bomb 14 C measurements. Global Biogeochemical Cycles, 21, B2015.  https://doi.org/10.1029/2006GB002784.CrossRefGoogle Scholar
  45. Takagaki, N., Komori, S., Suzuki, N., Iwano, K., Kuramoto, T., Shimada, S., Kurose, R., & Takahashi, K. (2012). Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophysical Research Letters, 39.  https://doi.org/10.1029/2012GL053988.
  46. Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D., & Zilitinkevich, S. (2017). Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Scientific Reports, 7, 1614.  https://doi.org/10.1038/s41598-017-01673-9.CrossRefGoogle Scholar
  47. Vlahos, P., & Monahan, E. C. (2009). A generalized model for the air-sea transfer of dimethyl sul-fide at high wind speeds. Geophysical Research Letters, 36(21), 0094–8276.  https://doi.org/10.1029/2009GL040695.CrossRefGoogle Scholar
  48. Vlahos, P., Monahan, E., Huebert, B., & Edson, J. (2011). Wind-dependence of DMS transfer velocity: Comparison of model with recent southern ocean observations. In S. Komori, W. McGillis, & R. Kurose (Eds.), Gas transfer at water surfaces 2010 (pp. 313–321). URL: http://hdl.handle.net/2433/156156.Google Scholar
  49. Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, 7373–7382.  https://doi.org/10.1029/92JC00188.CrossRefGoogle Scholar
  50. Wanninkhof, R., & McGillis, W. R. (1999). A cubic relationship between gas transfer and wind speed. Geophysical Research Letters, 26, 1889–1892.  https://doi.org/10.1029/1999GL900363.CrossRefGoogle Scholar
  51. Wanninkhof, R., Asher, W., & Monahan, E. (1995). The influence of bubbles on air-water gas exchange: Results from gas transfer experiments during WABEX-93. In B. Jähne & E. Monahan (Eds.), Air-water gas transfer, selected papers, 3rd international symposium on air-water gas transfer (pp. 239–254). Hanau: AEON.  https://doi.org/10.5281/zenodo.10571.CrossRefGoogle Scholar
  52. Wanninkhof, R., Hitchcock, G., Wiseman, W. J., Vargo, G., Ortner, P. B., Asher, W., Ho, D. T., Schlosser, P., Dickson, M., Masserini, R., Fanning, K., & Zhang, J. (1997). Exchange, dispersion, and biological productivity on the West Florida shelf: Results from a lagrangian tracer study. Geophysical Research Letters, 24(14), 1767–1770.  https://doi.org/10.1029/97GL01757.CrossRefGoogle Scholar
  53. Wanninkhof, R., Sullivan, K. F., & Top, Z. (2004). Air-sea gas transfer in the southern ocean. Journal of Geophysical Research, 109, C08S19.  https://doi.org/10.1029/2003JC001767.CrossRefGoogle Scholar
  54. Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., & McGillis, W. R. (2009). Advances in quantifying air-sea gas exchange and environmental forcing. Annual Review of Marine Science, 1, 213–244.  https://doi.org/10.1146/annurev.marine.010908.163742.CrossRefGoogle Scholar
  55. Wilhelms, S.C., Gulliver, J.S. (eds.): Air-water mass transfer—Selected papers from the 2nd international symposium on gas transfer at water surfaces, Minneapolis Minnesota, Sept. 11–14, 1990. American Society of Civil Engineers, New York (1991).Google Scholar
  56. Woolf, D., Leifer, I., Nightingale, P., Rhee, T., Bowyer, P., Caulliez, G., de Leeuw, G., Larsen, S., Liddicoat, M., Baker, J., & Andreae, M. (2007). Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test. Journal of Marine Systems, 66, 71–91.  https://doi.org/10.1016/j.jmarsys.2006.02.011.CrossRefGoogle Scholar
  57. Yaws, C. L. (1995). Handbook of transport property data. Houston: Gulf Publishing Company.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.HCI and IWR at Institute of Environmental PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations