Advertisement

Neuropsychological Assessment

  • Marjan JahanshahiEmail author
Chapter
  • 25 Downloads

Abstract

The aim of deep brain stimulation (DBS) is to improve function by controlling the targeted symptoms and ultimately ameliorating the quality of life (QoL) of the patients. Cognitive dysfunction and major psychiatric disorder are features of some of the disorders treated with DBS such as Parkinson’s disease (PD), which necessitates pre-operative screening to exclude cases with major cognitive deficits and psychiatric disorder unresponsive to treatment, as these can affect quality of life of the patients independent of the motor symptoms, and thus reduce the benefits of surgery. Even in disorders where cognition is largely intact prior to surgery (e.g. idiopathic dystonia), pre- and post-operative assessments of cognition are needed, as any form of brain surgery carries the potential risk of adverse cognitive effects. Furthermore, by a variety of mechanisms such as the positioning of the electrodes, spread of activation to neighbouring areas or effect of stimulation on distant parts of involved networks, changes in behaviour and mood may occur, which require careful documentation through pre- and post-operative assessments. Finally, DBS is a life-altering surgical intervention which can, over a relatively short period of time, have a dramatic impact on the patient’s symptoms and signs and modify their daily life and psychosocial functioning and interactions with other significant people in their lives. While much of these DBS-induced changes may be largely positive, even such positive change nevertheless requires adjustment and adaptation from the patient and their family. Neuropsychological assessment to screen for and exclude cases with major cognitive deficits or psychiatric disorders prior to surgery, and to establish a pre-operative baseline for cognitive function, mood, behaviour, psychosocial functioning and quality of life to compare with post-operative changes in these domains, is valuable for quantifying the beneficial effects of DBS and also documenting any potential adverse effects. As part of the multidisciplinary team, clinical neuropsychologists can also play a role in the pre-operative education and preparation of patients and their families for the changes that DBS will bring to their lives, and for the management of any post-operative psychosocial maladjustment.

Keywords

Deep brain stimulation surgery Neuropsychology Cognition Psychiatric Psychosocial Parkinson’s disease Dystonia 

References

  1. Abbes M, Lhommée E, Thobois S, et al. Subthalamic stimulation and neuropsychiatric symptoms in Parkinson’s disease: results from a long-term follow-up cohort study. J Neurol Neurosurg Psychiatry. 2018;89:836–43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agid Y, Schupbach M, Gargiulo M, et al. Neurosurgery in Parkinson’s disease: the doctor is happy, the patient less so? J Neural Transm Suppl. 2006;70:409–14.Google Scholar
  3. Aleman GG, de Erausquin GA, Micheli F. Cognitive disturbances in primary blepharospasm. Mov Disord. 2009;24:2112–20.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allam N, Frank JE, Pereira C, Tomaz C. Sustained attention in cranial dystonia patients treated with botulinum toxin. Acta Neurol Scand. 2007;116:196–200.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ardouin C, Voon V, Worbe Y, et al. Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Mov Disord. 2006;21:1941–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ardouin C, Chereau I, Llorca PM, Lhomme E, et al. Assessment of hyper- and hypo-dopaminergic behaviours in Parkinson’s disease. Rev Neurol (Paris). 2009;165:845–56.CrossRefGoogle Scholar
  7. Ayobello A, Saway B, Greenage M. Attempted suicide in a Parkinsonian patient treated with DBS of the VIM and high dose carbidopa-levodopa. Case Rep Psychiatry. 2019;2019:2903762.PubMedPubMedCentralGoogle Scholar
  8. Balas M, Peretz C, Badarny S, et al. Neuropsychological profile of DYT1 dystonia. Mov Disord. 2006;21:2073–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bell E, Maxwell B, McAndrews MP, et al. A review of social and relational aspects of deep brain stimulation in Parkinson’s disease informed by healthcare provider experiences. Parkinsons Dis. 2011;2011:871874.PubMedPubMedCentralGoogle Scholar
  10. Benito-Leo NJ, Cubo E, Coronell C. Impact of apathy on health-related quality of life in recently diagnosed Parkinson’s disease: the ANIMO study. Mov Disord. 2012;27:211–8.CrossRefGoogle Scholar
  11. Ben-Shlomo Y, Camfield L, Warner T, the Epidemiological Study of Dystonia in Europe (ESDE) Collaborative Group. What are the determinants of quality of life in people with cervical dystonia. J Neurol Neurosurg Psychiatry. 2002;72:608–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Breen DP, Rohani M, Moro E, et al. Functional movement disorders arising after successful deep brain stimulation. Neurology. 2018;90:931–2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Broen M, Duits A, Visser-Vandewalle V, et al. Impulse control and related disorders in Parkinson’s disease patients treated with bilateral subthalamic nucleus stimulation: a review. Parkinsonism Relat Disord. 2011;17:413–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bugalho P, Correa B, Guimaraes J, et al. Set-shifting and behavioral dysfunction in primary focal dystonia. Mov Disord. 2008;23:200–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cakmakli GY, Oruckaptan H, Saka E, Elibol B. Reversible acute cognitive dysfunction induced by bilateral STN stimulation. J Neurol. 2009;256:1360–2.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Camfield L, Ben-Shlomo Y, Warner T, the Epidemiological Study of Dystonia in Europe (ESDE) Collaborative Group. Impact of cervical dystonia on quality of life. Mov Disord. 2002;17:838–41.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Caparros-Lefebvre D, Blond S, Pecheux N, et al. Evaluation neuropsychologique avant et apres stimulation thalamique chez 9 parkinsoniens. Rev Neurol (Paris). 1992;148:117–22.Google Scholar
  18. Castrioto A, Lhommee E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol. 2014;13:287–305.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ceravolo R, Brusa L, Galati S, et al. Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in parkinsonian patients. Eur J Neurol. 2011;18:842–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Combs HL, Folley BS, Berry DT, et al. Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: a meta-analysis. Neuropsychol Rev. 2015;25:439–54.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Contarino MF, Foncke EM, Cath DC, et al. Effect of pallidal deep brain stimulation on psychiatric symptoms in myoclonus-dystonia due to ε-sarcoglycan mutations. Arch Neurol. 2011;68:1087–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Costa A, Carlesimo GA, Caltagirone C, et al. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:64–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Czernecki V, Schupbach M, Yaici S, et al. Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov Disord. 2008;23:964–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Daniels C, Krack P, Volkmann J, et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2010;25:1583–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dinkelbach L, Mueller J, Poewe W, et al. Cognitive outcome of pallidal deep brain stimulation for primary cervical dystonia: one year follow up results of a prospective multicenter trial. Parkinsonism Relat Disord. 2015;21:976–80.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7:193–224.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Elgebaly A, Elfil M, Attia A, et al. Neuropsychologica performance changes following subthalamic versus pallidal deep brain stimulation in Parkinson’s disease: a systematic review and meta-analysis. CNS Spectr. 2017;23:1–14.Google Scholar
  29. Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fisher R, Salanova V, Witt T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Foley JA, Vinke RS, Limousin P, Cipolotti L. Relationship of cognitive function to motor symptoms and mood disorders in patients with isolated dystonia. Cogn Behav Neurol. 2017;30:16–22.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Foncke EM, Schuurman PR, Speelman JD. Suicide after deep brain stimulation of the internal globus pallidus for dystonia. Neurology. 2006;66:142–3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Francel P, Ryder K, Wetmore J, et al. Deep brain stimulation for Parkinson’s disease: association between stimulation parameters and cognitive performance. Stereotact Funct Neurosurg. 2004;82:191–3.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318:1309–12.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Georgiev D, Dirnberger G, Wilkinson L, et al. In Parkinson’s disease on a probabilistic Go/NoGo task deep brain stimulation of the subthalamic nucleus only interferes with withholding of the most prepotent responses. Exp Brain Res. 2016;234:1133–43.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gisquet E. Cerebral implants and Parkinson’s disease: a unique form of biographical disruption? Soc Sci Med. 2008;67:1847–51.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural network perspective. Brain. 2015;138:1454–76.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Haahr A, Kirkevold M, Hall EO, Østergaard K. From miracle to reconciliation: a hermeneutic phenomenological study exploring the experience of living with Parkinson’s disease following deep brain stimulation. Int J Nurs Stud. 2010;47:1228–36.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Haahr A, Kirkevold M, Hall EO, Østergaard K. Living with advanced Parkinson’s disease: a constant struggle with unpredictability. J Adv Nurs. 2011;67:408–17.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Halbig TD, Gruber D, Kopp UA, et al. Pallidal stimulation in dystonia: effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry. 2005;76:1713–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Halbig TD, Tse W, Frisina PG, et al. Subthalamic deep brain stimulation and impulse control in Parkinson’s disease. Eur J Neurol. 2009;16:493–7.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hariz MI, Johansson F, Shamsgovara P, et al. Bilateral subthalamic nucleus stimulation in a parkinsonian patient with preoperative deficits in speech and cognition: persistent improvement in mobility but increased dependency: a case study. Mov Disord. 2000;15:136–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hariz GM, Limousin P, Tisch S, et al. Patients’ perceptions of life shift after deep brain stimulation for primary dystonia—a qualitative study. Mov Disord. 2011;26:2101–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hely MA, Reid WGJ, Adena MA, et al. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23:837–44.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Houeto JL, Mesnage V, Mallet L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72:701–7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Houeto JL, Mallet L, Mesnage V, et al. Subthalamic stimulation in Parkinson disease: behavior and social adaptation. Arch Neurol. 2006;63:1090–5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jahanshahi M. Behavioural and psychiatric manifestations in Dystonia. In: Anderson K, Weiner W, Lang A, editors. Behavioural neurology of movement disorders. Advances in neurology, vol. 96. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 291–319.Google Scholar
  49. Jahanshahi M. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson’s disease. Front Syst Neurosci. 2013;7:118.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jahanshahi M. Neuropsychological and neuropsychiatric features of idiopathic and DYT1 dystonia and the impact of medical and surgical treatment. Arch Clin Neuropsychol. 2017;32:888–905.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jahanshahi M, Marsden CD. Depression in torticollis: a controlled study. Psychol Med. 1988;18:925–33.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jahanshahi M, Marsden CD. Body concept, disability and depression in torticollis. Behav Neurol. 1990a;3:117–31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jahanshahi M, Marsden CD. A longitudinal follow-up study of depression, disability and body concept in torticollis. Behav Neurol. 1990b;3:233–46.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jahanshahi M, Marsden CD. Living and coping with Parkinson’s disease: a self-help guide for patients and their carers. London: Souvenir Press; 1998.Google Scholar
  55. Jahanshahi M, Torkamani M. The cognitive features of idiopathic and DYT1 dystonia. Mov Disord. 2017;32:1348–55.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jahanshahi M, Ardouin C, Brown RG, et al. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain. 2000;123:1142–54.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jahanshahi M, Rowe J, Fuller R. Cognitive executive function in dystonia. Mov Disord. 2003;18:1470–81.Google Scholar
  58. Jahanshahi M, Czernecki V, Zurowski AM. Neuropsychological, neuropsychiatric, and quality of life issues in DBS for dystonia. Mov Disord. 2011;26:S63–78.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jahanshahi M, Torkamani M, Beigi M, et al. Pallidal stimulation for primary generalised dystonia: effect on cognition, mood and quality of life. J Neurol. 2014;261:164–73.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Jahanshahi M, Obeso I, Baunez C, et al. Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity. Mov Disord. 2015a;30:128–40.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jahanshahi M, Obeso I, Rothwell JC, Obeso JA. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci. 2015b;16:719–32.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kemmotsu N, Price CC, Oyama G, et al. Pre- and post- GPi DBS neuropsychological profiles in a case of X-linked dystonia-Parkinsonism. Clin Neuropsychol. 2011;25:141–59.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kiss ZH. Bilateral pallidal neurostimulation—long-term motor and cognitive effects in primary generalized dystonia. Nat Clin Pract Neurol. 2007;3:482–3.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kleiner-Fisman G, Liang GS, Moberg PJ, et al. Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: impact on severity, neuropsychological status, and quality of life. J Neurosurg. 2007;107:29–36.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kupsch A, Benecke R, Muller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.CrossRefGoogle Scholar
  66. L’hommee E, Klinger H, Thobois S, et al. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain. 2012;135:1463–77.CrossRefGoogle Scholar
  67. Leimbach F, Gratwicke J, Foltynie T, Limousin P, Zrinzo L, Jahanshahi M. Impact of deep brain stimulation of the pedunculopontine nucleus on cognition in Parkinson’s disease and progressive supranuclear palsy. Clin Parkinson Relat Disord. 2019;1:48–51.Google Scholar
  68. Lewis L, Butler A, Jahanshahi M. Depression in focal, segmental and generalized dystonia. J Neurol. 2008;255:1750–5.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lim SY, Evans AH, Miyasaki JM. Impulse control and related disorders in Parkinson’s disease. Ann N Y Acad Sci. 2008;1142:85–107.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lim SY, O’Sullivan SS, Kotschet K, et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson’s disease. J Clin Neurosci. 2009;16:1148–52.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Litvan I, Aarsland D, Adler CH, et al. MDS task force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26:1814–24.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Litvan I, Goldman JG, Troster AI, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov Disord. 2012;27:349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Loher TJ, Gutbrod K, Fravi NL, et al. Thalamic stimulation for tremor. Subtle changes in episodic memory are related to stimulation per se and not to a microthalamotomy effect. J Neurol. 2003;250:707–13.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Maier F, Lewis CJ, Horstkoetter N, et al. Subjective perceived outcome of subthalamic deep brain stimulation in Parkinson’s disease one year after surgery. Parkinsonism Relat Disord. 2016;24:41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mallet L, Polosan M, Jaafari N, et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N Engl J Med. 2008;359:2121–34.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Martinez-Fernandez R, Pelissier P, Quesada J-L, et al. Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:311–8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Martinez-Martinez AM, Aguilar OM, Acevedo-Triana CA. Meta-analysis of the relationship between deep brain stimulation in patients with Parkinson’s disease and performance in evaluation tests for executive brain functions. Parkinsons Dis. 2017;2017:9641392.PubMedPubMedCentralGoogle Scholar
  78. McNeely HE, Mayberg HS, Lozano AM, Kennedy SH. Neuropsychological impact of Cg25 deep brain stimulation for treatment-resistant depression: preliminary results over 12 months. J Nerv Ment Dis. 2008;196:405–10.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Muller J, Wissel J, Kemmler G, et al. Craniocervical dystonia questionnaire (CDQ-24): development and validation of a disease-specific quality of life instrument. J Neurol Neurosurg Psychiatry. 2004;75:749–53.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65:1239–45.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Obeso I, Wilkinson L, Rodríguez-Oroz MC, et al. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson’s disease. Exp Brain Res. 2013;226:451–62.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Obeso I, Wilkinson L, Speekenbrink M, et al. The subthalamic nucleus alters the response threshold and controls speed-accuracy adjustments in situations of conflict: evidence from unilateral subthalamotomy in Parkinson’s disease. Brain. 2014;137:1470–80.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Odekerken VJJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Owen T, Gimeno H, Selway R, Lin JP. Cognitive function in children with primary dystonia before and after deep brain stimulation. Eur J Paediatr Neurol. 2015;19:48–55.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Page D, Butler A, Jahanshahi M. Quality of life in focal, segmental, and generalized dystonia. Mov Disord. 2007;22:341–7.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015;14:518–31.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Papathanasiou I, MacDonald L, Whurr R, et al. Perceived stigma among patients with spasmodic dysphonia. J Med Speech-Lang Pathol. 1997;5:251–61.Google Scholar
  88. Papathanasiou I, MacDonald L, Whurr R, Jahanshahi M. Perceived stigma in spasmodic torticollis. Mov Disord. 2001;16:280–5.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Parsons TD, Rogers SA, Braaten AJ, et al. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006;5:578–88.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Piacentini S, Romito L, Franzini A, et al. Mood disorder following DBS of the left amygdaloid region in a dystonia patient with a dislodged electrode. Mov Disord. 2008;23:147–50.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Pillon B, Ardouin C, Dujardin K, et al. Preservation of cognitive function in dystonia treated by pallidal stimulation. Neurology. 2006;66:1556–8.CrossRefGoogle Scholar
  92. Pinto S, Ferraye M, Espesser R, et al. Stimulation of the pedunculopontine nucleus area in Parkinson’s disease: effects on speech and intelligibility. Brain. 2014;137:2759–72.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Pote I, Torkamani M, Kefalopoulou ZM, et al. Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson’s disease act under speed pressure. Exp Brain Res. 2016;234:1837–48.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rahman S, Griffin HJ, Quinn NP, Jahanshahi M. Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord. 2008;23:1428–34.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ricciardi L, Piano C, Rita Bentivoglio A, Fasano A. Pedunculopontine nucleus stimulation in Parkinson’s disease dementia. Biol Psychiatry. 2015;77:e35–40.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Rieu I, Martinez-Martin P, Pereira B, De Chazeron I, Verhagen Metman L, Jahanshahi M, Ardouin C, Chéreau I, Brefel-Courbon C, Ory-Magne F, Klinger H, Peyrol F, Schupbach M, Dujardin K, Tison F, Houeto JL, Krack P, Durif F. International validation of a behavioral scale in Parkinson’s disease without dementia. Mov Disord. 2015;30(5):705–13.  https://doi.org/10.1002/mds.26223. Epub 2015 Mar 21.
  97. Romano R, Bertolino A, Gigante A, et al. Impaired cognitive functions in adult-onset primary cranial cervical dystonia. Parkinsonism Relat Disord. 2014;20:162–5.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Saint-Cyr JA, Trépanier LL, Kumar R, et al. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain. 2000;123:2091–108.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;69:308–12.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schuepbach WMM, Rau J, Knudsen K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Schupbach M, Gargiulo M, Welter ML, et al. Neurosurgery in Parkinson disease: a distressed mind in a repaired body? Neurology. 2006;66:1811–6.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Scott R, Gregory R, Wilson J, et al. Executive cognitive deficits in primary dystonia. Mov Disord. 2003;18:539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Shahmoon S, Jahanshahi M. Optimizing psychosocial adjustment after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2017;32:1155–8.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Smeding HMM, Goudriaan AE, Foncke EMJ, et al. Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry. 2007;78:517–9.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Smeding HM, Speelman JD, Huizenga HM, et al. Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson disease. J Neurol Neurosurg Psychiatry. 2011;82:754–60.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Thevathasan W, Silburn PA, Brooker H, Coyne TJ, Khan S, Gill SS, et al. The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J Neurol Neurosurg Psychiatry. 2010;81(10):1099–104.  https://doi.org/10.1136/jnnp.2009.189324.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Thobois S, Ardouin C, L’homme E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–27.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Torkamani M, Jahanshahi M. Neuropsychological and neuropsychiatric features of dystonia and the impact of medical and surgical treatment. In: Tröster AI, editor. Clinical neuropsychology and cognitive neurology of Parkinson’s disease and other movement disorders. New York: Oxford University Press; 2014. p. 455–83.Google Scholar
  109. Tröster AI. Some clinically useful information that neuropsychology provides patients, care partners, neurologists, and neurosurgeons about deep brain stimulation for Parkinson’s disease. Arch Clin Neuropsychol. 2017;32:810–28.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tröster AI, Fields JA, Wilkinson SB, et al. Neuropsychological functioning before and after unilateral thalamic stimulating electrode implantation in Parkinson’s disease. Neurosurg Focus. 1997;2:9.CrossRefGoogle Scholar
  111. Tröster AI, Wilkinson SB, Fields JA, et al. Chronic electrical stimulation of the left ventrointermediate (Vim) thalamic nucleus for the treatment of pharmacotherapy-resistant Parkinson’s disease: a differential impact on access to semantic and episodic memory? Brain Cogn. 1998;38:125–49.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Tröster AI, Fields JA, Pahwa R, et al. Neuropsychological and quality of life outcome after thalamic stimulation for essential tremor. Neurology. 1999;53:1774–80.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tsai SZ, Lin SH, Lin SZ, et al. Neuropsychological effects after chronic subthalamic stimulation and the topography of the nucleus in Parkinson’s disease. Neurosurgery. 2007;61:1024–30.CrossRefGoogle Scholar
  114. Tyagi H, Apergis-Schoute AM, Akram H, et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive compulsive disorder: clinical and imaging evidence for dissociable effects. Biol Psychiatry. 2019;85:726–34.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Valldeoriola F, Regidor I, Minguez-Castellanos A, et al. Efficacy and safety of pallidal stimulation in primary dystonia: results of the Spanish multicentric study. J Neurol Neurosurg Psychiatry. 2010;81:65–9.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Volkmann J, Daniels C, Witt K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol. 2010;6:487–98.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Voon V, Kubu C, Krack P, et al. Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord. 2006;21(Suppl 14):S305–27.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Voon V, Krack P, Lang AE, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131:2720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wang JW, Zhang YQ, Zhang XH, et al. Cognitive and psychiatric effects of STN versus GPi deep brain stimulation in Parkinson’s disease: a meta-analysis of randomized controlled trials. PLoS One. 2016;11:e0156721.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Weaver FM, Follett KA, Stern M, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79:55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Weintraub D. Dopamine and impulse control disorders in Parkinson’s disease. Ann Neurol. 2008;64(Suppl 2):S93–100.PubMedPubMedCentralGoogle Scholar
  122. Weintraub D, Duda JE, Carlson K, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2013;84:1113–8.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Williams A, Gill S, Varma T, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010;9:581–91.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Witt K, Daniels C, Reiff J, et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol. 2008;7:605–14.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Witt K, Daniels C, Krack P, et al. Negative impact of borderline global cognitive scores on quality of life after subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Sci. 2011;310:261–6.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Witt K, Granert O, Daniels C, et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain. 2013;136:2109–19.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Woods SP, Fields JA, Lyons KE, et al. Neuropsychological and quality of life changes following unilateral thalamic deep brain stimulation in Parkinson’s disease: a one-year follow-up. Acta Neurochir. 2001;143:1273–8.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Xie Y, Meng X, Xiao J, et al. Cognitive changes following bilateral deep brain stimulation of subthalamic nucleus in Parkinson’s disease: a meta-analysis. Biomed Res Int. 2016;2016:3596415.PubMedPubMedCentralGoogle Scholar
  129. York MK, Wilde EA, Simpson R, Jankovic J. Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. J Neurol Sci. 2009;287:159–71.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zanini S, Moschella V, Stefani A, et al. Grammar improvement following deep brain stimulation of the subthalamic and the pedunculopontine nuclei in advanced Parkinson’s disease: a pilot study. Parkinsonism Relat Disord. 2009;15:606–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Functional Neurosurgery Unit, Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, The National Hospital for Neurology and NeurosurgeryLondonUK

Personalised recommendations