Future Perspectives: Adaptive Deep Brain Stimulation

  • Martijn Beudel
  • Margot HeijmansEmail author
  • Jeroen G. V. Habets
  • Pieter L. Kubben


In the last decades, neuromodulation, especially deep brain stimulation (DBS), has become an important treatment option in many medical refractory neurological and psychiatric disorders. However, there are still many limitations of DBS especially in terms of efficacy, side effects, and efficiency. A main reason explaining these limitations is the traditional open-loop DBS design, which allows a constant level of stimulation that does not correspond with the fluctuating clinical need. One way to circumvent this limitation is to make DBS act in a responsive way based on the presence of pathological neural activity or other biomarkers. This form of stimulation is called adaptive DBS (aDBS) or closed-loop DBS. At present the only disorder in which aDBS is clinically applied is epilepsy. However, there is an emerging field working on aDBS in other neurological disorders, especially movement disorders, with promising results. In this chapter, an in-depth analysis of the current applications and barriers of aDBS in neurological and psychiatric diseases will be given. The chapter will start with principles of aDBS, followed by indications, possible biomarkers, and evidence for aDBS in a disease-specific way. Finally, future, more data-driven approaches for applying aDBS will be discussed.


Deep brain stimulation Brain–computer interface Adaptive DBS Responsive Closed loop Movement disorders Neuromodulation Epilepsy Tourette’s syndrome 


  1. Adamchic I, Hauptmann C, Barnikol UB, et al. Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord. 2014;29(13):1679–84.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson WS, Kossoff EH, Bergey GK, Jallo GI. Implantation of a responsive neurostimulator device in patients with refractory epilepsy. Neurosurg Focus. 2008;25(3):E12.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baizabal-Carvallo JF, Kagnoff MN, Jimenez-Shahed J, et al. The safety and efficacy of thalamic deep brain stimulation in essential tremor: 10 years and beyond. J Neurol Neurosurg Psychiatry. 2014;85(5):567–72.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barbe MT, Liebhart L, Runge M, et al. Deep brain stimulation in the nucleus ventralis intermedius in patients with essential tremor: habituation of tremor suppression. J Neurol. 2011;258(3):434–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barow E, Neumann W-J, Brücke C, Huebl J, Horn A, Brown P, et al. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain. 2014;137:3012–24.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Basu I, Graupe D, Tuninetti D, et al. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design. J Neural Eng. 2013;10(3):036019.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84(8):810–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beudel M, Little S, Pogosyan A, et al. Tremor reduction by deep brain stimulation is associated with gamma power suppression in Parkinson’s disease. Neuromodulation. 2015;18(5):349–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beudel M, Oswal A, Jha A, et al. Oscillatory beta power correlates with Akinesia-rigidity in the Parkinsonian subthalamic nucleus. Mov Disord. 2017;32(1):174–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Blumenfeld Z, Koop MM, Prieto TE, et al. Sixty-hertz stimulation improves bradykinesia and amplifies subthalamic low-frequency oscillations. Mov Disord. 2017;32(1):80–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bogdan DI, van Laar T, Oterdoom DLM, Drost G, van Dijk JMC, Beudel M. Optimal parameters of deep brain stimulation in essential tremor: a meta-analysis and novel programming strategy. Abstract # 1395, Movement disorders conference. 2019.Google Scholar
  13. Boon P, Vonck K, Van Walleghem P, et al. Programmed and magnet-induced vagus nerve stimulation for refractory epilepsy. J Clin Neurophysiol. 2001;18(5):402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boon P, Vonck K, van Rijckevorsel K, et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure. 2015;32:52–61.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bour LJ, Ackermans L, Foncke EM, et al. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome: report of three cases. Clin Neurophysiol. 2015;126(8):1578–88.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol. 2013;23(5):436–40.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brodsky MA, Anderson S, Murchison C, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology. 2017;89(19):1944–50.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bronte-Stewart H, Barberini C, Koop MM, et al. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol. 2009;215(1):20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cagnan H, Little S, Foltynie T, et al. The nature of tremor circuits in parkinsonian and essential tremor. Brain. 2014;137(Pt 12):3223–34.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cagnan H, Pedrosa D, Little S, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140(1):132–45.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen CC, Brucke C, Kempf F, et al. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol. 2006;16(22):R952–3.PubMedCrossRefPubMedCentralGoogle Scholar
  23. de Hemptinne C, Ryapolova-Webb ES, Air EL, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110(12):4780–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. de Hemptinne C, Swann NC, Ostrem JL, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Delgado JM, Delgado-García JM, Grau C. Mobility controlled by feedback cerebral stimulation in monkeys. Physiol Behav. 1976;16:43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dowd RS, Pourfar M, Mogilner AY. Deep brain stimulation for Tourette syndrome: a single-center series. J Neurosurg. 2017:1–9.Google Scholar
  27. Eggleston KS, Olin BD, Fisher RS. Ictal tachycardia: the head-heart connection. Seizure. 2014;23(7):496–505.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fasano A, Lozano AM. The FM/AM world is shaping the future of deep brain stimulation. Mov Disord. 2014;29(2):161–3.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Figee M, Luigjes J, Smolders R, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci. 2013;16:386–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Geller EB, Skarpaas TL, Gross RE, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58(6):994–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Giannicola G, Marceglia S, Rossi L, et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp Neurol. 2010;226(1):120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Giannicola G, Rosa M, Servello D, et al. Subthalamic local field potentials after seven-year deep brain stimulation in Parkinson’s disease. Exp Neurol. 2012;237(2):312–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Graupe D, Basu I, Tuninetti D, et al. Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol Res. 2010;32(9):899–904.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Graupe D, Tuninetti D, Slavin KV, Basu I. Closed-loop electrochemical feedback system for DBS. J Neurosurg. 2014;121(3):762–3.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Griffiths RI, Kotschet K, Arfon S, et al. Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis. 2012;2(1):47–55.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Grimaldi G, Manto M. Neurological tremor: sensors, signal processing and emerging applications. Sensors (Basel). 2010;10(2):1399–422.CrossRefGoogle Scholar
  37. Habets JG, Heijmans M, Kuijf ML, et al. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord. 2018;33(12):1834–43.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hasan H, Athauda DS, Foltynie T, Noyce AJ. Technologies assessing limb bradykinesia in Parkinson’s disease. J Parkinsons Dis. 2017;7(1):65–77.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hauser RA, McDermott MP, Messing S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol. 2006;63(12):1756–60.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Heck CN, King-Stephens D, Massey AD, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS system pivotal trial. Epilepsia. 2014;55(3):432–41.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Helmich RC, Hallett M, Deuschl G, et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135(Pt 11):3206–26.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Herron JA, Thompson MC, Brown T, et al. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J Neurosurg. 2017;127(3):580–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hirschmann J, Ozkurt TE, Butz M, et al. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson’s disease. Neuroimage. 2011;55(3):1159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hirschmann J, Butz M, Hartmann CJ, et al. Parkinsonian rest tremor is associated with modulations of subthalamic high-frequency oscillations. Mov Disord. 2016;31(10):1551–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hirschmann J, Schoffelen JM, Schnitzler A, van Gerven MAJ. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus. Clin Neurophysiol. 2017;128(10):2029–36.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Holslag JAH, Neef N, Beudel M, et al. Deep brain stimulation for essential tremor: a comparison of targets. World Neurosurg. 2018;110:e580–4.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Horgan J. The Forgotten Era of Brain Chips. Scientific American. 2005;293(4):66–73.Google Scholar
  49. Horn A, Reich M, Vorwerk J, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Israelashvili M, Smeets AY, Bronfeld M, et al. Tonic and phasic changes in anteromedial globus pallidus activity in Tourette syndrome. Mov Disord. 2017;32(7):1091–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jeon H, Lee W, Park H, et al. Automatic classification of tremor severity in Parkinson’s disease using a wearable device. Sensors (Basel). 2017;17(9)Google Scholar
  53. Jeppesen J, Beniczky S, Fuglsang-Frederiksen A, et al. Detection of epileptic-seizures by means of power spectrum analysis of heart rate variability: a pilot study. Technol Health Care. 2010;18(6):417–26.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jimenez-Shahed J, Telkes I, Viswanathan A, Ince NF. GPi oscillatory activity differentiates tics from the resting state, voluntary movements, and the unmedicated parkinsonian state. Front Neurosci. 2016;10:436.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jobst BC, Kapur R, Barkley GL, et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia. 2017;58(6):1005–14.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Johnson LA, Nebeck SD, Muralidharan A, et al. Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate—is beta enough? Brain Stimul. 2016;9(6):892–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kefalopoulou Z, Zrinzo L, Jahanshahi M, et al. Bilateral globus pallidus stimulation for severe Tourette’s syndrome: a double-blind, randomised crossover trial. Lancet Neurol. 2015;14(6):595–605.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Khobragade N, Graupe D, Tuninetti D. Towards fully automated closed-loop deep brain stimulation in Parkinson's disease patients: a LAMSTAR-based tremor predictor. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:2616–9.PubMedPubMedCentralGoogle Scholar
  59. Kossoff EH, Ritzl EK, Politsky JM, et al. Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia. 2004;45(12):1560–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kros L, Rooda OH, De Zeeuw CI, Hoebeek FE. Controlling cerebellar output to treat refractory epilepsy. Trends Neurosci. 2015;38(12):787–99.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kuhn AA, Kempf F, Brucke C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–73.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069–77.PubMedCrossRefGoogle Scholar
  63. Lee KH, Lujan JL, Trevathan JK, et al. WINCS harmoni: closed-loop dynamic neurochemical control of therapeutic interventions. Sci Rep. 2017;7:46675.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lempka SF, Miocinovic S, Johnson MD, et al. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009;6(4):046001.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lesser RP, Kim SH, Beyderman L, et al. Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology. 1999;53(9):2073–81.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Limousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry. 1999;66(3):289–96.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Little S, Pogosyan A, Neal S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Little S, Beudel M, Zrinzo L, et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016a;87(7):717–21.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Little S, Tripoliti E, Beudel M, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016b;87(12):1388–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Litvak V, Jha A, Eusebio A, et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain. 2011;134(Pt 2):359–74.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Malekmohammadi M, Herron J, Velisar A, et al. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov Disord. 2016;31(3):426–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Maling N, Hashemiyoon R, Foote KD, et al. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette’s syndrome. PLoS One. 2012;7(9):e44215.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Marceglia S, Rosa M, Servello D, et al. Adaptive deep brain stimulation (aDBS) for Tourette syndrome. Brain Sci. 2017;8(1)Google Scholar
  74. Martinez-Fernandez R, Pelissier P, Quesada JL, et al. Postoperative apathy can neutralise benefits in quality of life after subthalamic stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(3):311–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Maxwell JC. I. On governors. Proc R Soc Lond. 1868;(16):270–283.Google Scholar
  76. Meidahl AC, Tinkhauser G, Herz DM, et al. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov Disord. 2017;32(6):810–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mirowski M, Reid PR, Mower MM, et al. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N Engl J Med. 1980;303(6):322–4.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Molina R, Okun MS, Shute JB, et al. Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J Neurosurg. 2018;129(2):308–14.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Moro E, Poon YY, Lozano AM, et al. Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch Neurol. 2006;63(9):1266–72.PubMedPubMedCentralGoogle Scholar
  80. Morrell MJ, RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Morris GL 3rd. A retrospective analysis of the effects of magnet-activated stimulation in conjunction with vagus nerve stimulation therapy. Epilepsy Behav. 2003;4(6):740–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Motamedi GK, Lesser RP, Miglioretti DL, et al. Optimizing parameters for terminating cortical afterdischarges with pulse stimulation. Epilepsia. 2002;43(8):836–46.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Neumann W-J, Horn A, Ewert S, Huebl J, Brücke C, Slentz C, et al. A localized pallidal physiomarker in cervical dystonia. Ann Neurol. 2017;82:912–24.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Nieuwboer A, Kwakkel G, Rochester L, Jones D, van Wegen E, Willems AM, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry. 2007;78:134–40.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Osorio I. Automated seizure detection using EKG. Int J Neural Syst. 2014;24(2):1450001.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Osorio I, Frei MG, Sunderam S, et al. Automated seizure abatement in humans using electrical stimulation. Ann Neurol. 2005;57(2):258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Oswal A, Beudel M, Zrinzo L, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139(Pt 5):1482–96.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pavei J, Heinzen RG, Novakova B, et al. Early seizure detection based on cardiac autonomic regulation dynamics. Front Physiol. 2017;8:765.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Peters TE, Bhavaraju NC, Frei MG, Osorio I. Network system for automated seizure detection and contingent delivery of therapy. J Clin Neurophysiol. 2001;18(6):545–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Piña-Fuentes D, Little S, Oterdoom M, et al. Adaptive DBS in a Parkinson’s patient with chronically implanted DBS: a proof of principle. Mov Disord. 2017;32(8):1253–4.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Piña-Fuentes D, van Zijl JC, van Dijk JMC, Little S, Tinkhauser G, Oterdoom DLM, et al. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus. Neurobiol Dis. 2018a;121:47–57.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM, et al. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus. 2018b;45:E3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Piña-Fuentes D, van Dijk JMC, Drost G, van Zijl JC, van Laar T, Tijssen MAJ, et al. Direct comparison of oscillatory activity in the motor system of Parkinson’s disease and dystonia: a review of the literature and meta-analysis. Clin Neurophysiol. 2019;130:917–24.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Popovych OV, Lysyansky B, Tass PA. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci Rep. 2017;7(1):1033.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Priori A, Foffani G, Pesenti A, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189(2):369–79.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Provenza NR, Matteson ER, Allawala AB, et al. The case for adaptive neuromodulation to treat severe intractable mental disorders. Front Neurosci. 2019;13:152.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Qasim SE, de Hemptinne C, Swann NC, et al. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson’s disease. Neurobiol Dis. 2016;86:177–86.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Rodriguez-Martin D, Sama A, Perez-Lopez C, et al. Home detection of freezing of gait using support vector machines through a single waist-worn triaxial accelerometer. PLoS One. 2017;12(2):e0171764.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rosa M, Marceglia S, Servello D, et al. Time dependent subthalamic local field potential changes after DBS surgery in Parkinson’s disease. Exp Neurol. 2010;222(2):184–90.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Rosa M, Arlotti M, Marceglia S, et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32(4):628–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rosin B, Slovik M, Mitelman R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sanchez-Ferro A, Elshehabi M, Godinho C, et al. New methods for the assessment of Parkinson’s disease (2005 to 2015): a systematic review. Mov Disord. 2016;31(9):1283–92.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Servello D, Zekaj E, Saleh C, et al. Sixteen years of deep brain stimulation in Tourette’s syndrome: a critical review. J Neurosurg Sci. 2016;60(2):218–29.PubMedPubMedCentralGoogle Scholar
  104. Shoeb A, Pang T, Guttag J, Schachter S. Non-invasive computerized system for automatically initiating vagus nerve stimulation following patient-specific detection of seizures or epileptiform discharges. Int J Neural Syst. 2009;19(3):157–72.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shute JB, Okun MS, Opri E, et al. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. Neuroimage Clin. 2016;12:165–72.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Smeets AY, Duits AA, Leentjens AF, et al. Thalamic deep brain stimulation for refractory Tourette syndrome: clinical evidence for increasing disbalance of therapeutic effects and side effects at long-term follow-up. Neuromodulation. 2018;21(2):197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Swann NC, de Hemptinne C, Miocinovic S, et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s disease. J Neurosci. 2016;36(24):6445–58.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Swann NC, de Hemptinne C, Miocinovic S, et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J Neurosurg. 2018a;128(2):605–16.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R, et al. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018b;15(4):046006.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tinkhauser G, Pogosyan A, Little S, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–67.PubMedPubMedCentralCrossRefGoogle Scholar
  111. van Elmpt WJ, Nijsen TM, Griep PA, Arends JB. A model of heart rate changes to detect seizures in severe epilepsy. Seizure. 2006;15(6):366–75.PubMedCrossRefPubMedCentralGoogle Scholar
  112. van Wijk BC, Beudel M, Jha A, et al. Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson’s disease. Clin Neurophysiol. 2016;127(4):2010–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Velisar A, Syrkin-Nikolau J, Blumenfeld Z, Trager MH, Afzal MF, Prabhakar V, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019;12:868.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Verhagen R, Zwartjes DG, Heida T, et al. Advanced target identification in STN-DBS with beta power of combined local field potentials and spiking activity. J Neurosci Methods. 2015;253:116–25.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Widge AS, Licon E, Zorowitz S, et al. Predictors of hypomania during ventral capsule/ventral striatum deep brain stimulation. J Neuropsychiatry Clin Neurosci. 2016;28(1):38–44.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martijn Beudel
    • 1
  • Margot Heijmans
    • 2
    • 3
    Email author
  • Jeroen G. V. Habets
    • 2
    • 3
  • Pieter L. Kubben
    • 2
    • 3
    • 4
  1. 1.Department of NeurologyAmsterdam Neuroscience Institute, Amsterdam University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of NeurosurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
  3. 3.School of Mental Health and NeurosciencesMaastricht UniversityMaastrichtThe Netherlands
  4. 4.Department of NeurosurgeryRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations