Deep Brain Stimulation for Parkinson’s Disease

  • Timo R. ten Brinke
  • Martijn Beudel
  • Rob M. A. de BieEmail author


Deep brain stimulation (DBS) is an established treatment for advanced Parkinson’s disease (PD). The two most used targets for PD are the subthalamic nucleus and the internal globus pallidus. DBS is especially efficacious for the treatment of otherwise refractory tremor, medication-related motor response fluctuations, and dyskinesia. In general, the best motor response of DBS is as good as that of dopaminergic medication but more constant. The three cardinal pillars for successful DBS treatment comprise optimal patient selection, accurate DBS lead placement, and thorough postoperative care, which includes programming and medication adjustments.


Deep brain stimulation Parkinson’s disease Subthalamic nucleus Motor response fluctuations Indication 


  1. Afifi AK. Topical review: basal ganglia: functional anatomy and physiology. Part 2. J Child Neurol. 1994;9(4):352–61.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akram H, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in PD. Neuroimage. 2017;158:332–45. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12(10):366–75.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alomar S, et al. Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: a meta-analysis. Mov Disord. 2017;32(1):53–63. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alves G, et al. Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology. 2005;65(9):1436–41. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson VC, et al. Pallidal vs subthalamic nucleus deep brain stimulation in parkinson disease. Arch Neurol. 2005;62(4):554. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andrade-Souza YM, et al. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in PD. Neurosurgery. 2005;56(2 Suppl):360–8; discussion 360-8.Google Scholar
  8. Antonini A, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced PD: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018;34(12):2063–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aquino CC, Fox SH. Clinical spectrum of levodopa-induced complications. Mov Disord. 2015;30(1):80–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baker KB, et al. Somatotopic organization in the internal segment of the globus pallidus in PD. Exp Neurol. 2010;222(2):219–25.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barbe MT, et al. DBS of the PSA and the VIM in essential tremor: a randomized, double-blind, crossover trial. Neurology. 2018;91(6):e543–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Becerra JE, et al. Economic analysis of deep brain stimulation in Parkinson disease: systematic review of the literature. World Neurosurg. 2016;93:44–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhidayasiri R, Wolters E. Management of non-motor symptoms in advanced Parkinson disease. J Neurol Sci. 2008;266(1–2):216–28.PubMedPubMedCentralGoogle Scholar
  14. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32; discussion 722-32.Google Scholar
  15. Blomstedt P, Hariz MI. Hardware-related complications of deep brain stimulation: a ten year experience. Acta Neurochir. 2005;147(10):1061–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Blomstedt P, et al. Deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with PD: a randomised blinded evaluation. J Neurol Neurosurg Psychiatry. 2018;89(7):710–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Blume J, et al. Intraoperative clinical testing overestimates the therapeutic window of the permanent DBS electrode in the subthalamic nucleus. Acta Neurochir. 2017;159(9):1721–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bonifati V, et al. Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord. 2016;25:1–9.CrossRefGoogle Scholar
  19. Braak H, et al. Staging of brain pathology related to sporadic PD. Neurobiol Aging. 2003;24(2):197–211.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bronstein JM, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Calabresi P, et al. Levodopa-induced dyskinesias in patients with PD: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Castrioto A, et al. Mood and behavioural effects of subthalamic stimulation in PD. Lancet Neurol. 2014;13(3):287–305.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Coenen VA, et al. What is dorso-lateral in the subthalamic Nucleus (STN)?—a topographic and anatomical consideration on the ambiguous description of today’s primary target for deep brain stimulation (DBS) surgery. Acta Neurochir. 2008;150(11):1163–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cooper SE, et al. Return of bradykinesia after subthalamic stimulation ceases: relationship to electrode location. Exp Neurol. 2011;231(2):207–13.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cooper SE, et al. Association of deep brain stimulation washout effects with Parkinson disease duration. JAMA Neurol. 2013;70(1):95.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cubo R, Åström M, Medvedev A. Target coverage and selectivity in field steering brain stimulation. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, vol. 1; 2014. pp. 522–5.Google Scholar
  27. Deuschl G, et al. A randomized trial of deep-brain stimulation for PD. N Engl J Med. 2006;355(9):896–908.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deuschl G, et al. Neurostimulation for PD with early motor complications. N Engl J Med. 2013;368(21):2037–8.CrossRefGoogle Scholar
  29. Duker AP, Espay AJ. Surgical treatment of Parkinson disease: past, present, and future. Neurol Clin. 2013;31(3):799–808.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Espay AJ. Management of motor complications in Parkinson disease: current and emerging therapies. Neurol Clin. 2010;28(4):913–25.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Espay AJ, Lang AE. Common myths in the use of levodopa in parkinson disease. JAMA Neurol. 2017;74(6):633.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Esselink RAJ, et al. Unilateral pallidotomy versus bilateral subthalamic nucleus stimulation in PD: a randomized trial. Neurology. 2004;62(2):201–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fahn S. The 200-year journey of Parkinson disease: Reflecting on the past and looking towards the future. Parkinsonism Relat Disord. 2018;46:S1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fahn S, Elton R, program members UPDRS. Unified Parkinsons disease rating scale. In: Recent developments in Parkinsons disease, vol. 2. Florham Park, NJ: Macmillan Healthcare Information; 1987. p. 153–63.Google Scholar
  35. Fasano A, et al. Motor and cognitive outcome in patients with PD 8 years after subthalamic implants. Brain. 2010;133(9):2664–76.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Foley JA, et al. Standardised neuropsychological assessment for the selection of patients undergoing DBS for PD. Parkinsons Dis. 2018;2018:4328371.PubMedPubMedCentralGoogle Scholar
  37. Follett KA, et al. Pallidal versus subthalamic deep-brain stimulation for PD. N Engl J Med. 2010;362(22):2077–91.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Foltynie T, et al. MRI-guided STN DBS in PD without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82(4):358–63.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fox SH, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of PD. Mov Disord. 2018;33(8):1248–66.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gago MF, et al. Transient disabling dyskinesias: a predictor of good outcome in subthalamic nucleus deep brain stimulation in PD. Eur Neurol. 2009;61(2):94–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goetz CG, et al. Movement Disorder Society—sponsored revision of the Unified PD Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31(1):359–87.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Groiss SJ, et al. Deep brain stimulation in PD. Ther Adv Neurol Disord. 2009;2(6):20–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gross RE, et al. Electrophysiological mapping for the implantation of deep brain stimulators for PD and tremor. Mov Disord. 2006;21(S14):S259–83.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hassani OK, Mouroux M, Féger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience. 1996;72(1):105–15.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hawkes CH, Del Tredici K, Braak H. PD. Ann N Y Acad Sci. 2009;1170(1):615–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Haynes WIA, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33(11):4804–14.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ho AL, et al. Frameless robot-assisted deep brain stimulation surgery: an initial experience. Oper Neurosurg. 2019;17(4):424–31.CrossRefGoogle Scholar
  49. Holewijn RA, et al. General anesthesia versus local anesthesia in StereotaXY (GALAXY) for PD: study protocol for a randomized controlled trial. Trials. 2017;18(1):417.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Horn A, Kühn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage. 2015;107:127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Houeto J-L, et al. Subthalamic stimulation in Parkinson disease. Arch Neurol. 2003;60(5):690.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ilinsky I, et al. Human motor thalamus reconstructed in 3D from continuous sagittal sections with identified subcortical afferent territories. eNeuro. 2018;5(3):ENEURO.0060-18.2018.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jenkinson C, et al. Self-reported functioning and well-being in patients with PD: comparison of the Short-form Health Survey (SF-36) and the PD Questionnaire (PDQ-39). Age Ageing. 1995;24(6):505–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kalia LV, Lang AE. Parkinson Dis. Lancet. 2015;386(9996):896–912.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Krack P, et al. Opposite motor effects of pallidal stimulation in PD. Ann Neurol. 1998;43(2):180–92.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Levy R, et al. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. 2000;20(20):7766–75.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Levy R, et al. Dependence of subthalamic nucleus oscillations on movement and dopamine in PD. Brain. 2002;125(Pt 6):1196–209.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lhommée E, et al. Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for PD with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol. 2018;17(3):223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lieberman A, Krishnamurthi N. Is there room for non-dopaminergic treatment in Parkinson disease? J Neural Transm. 2013;120(2):347–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lim S-Y, et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for PD. J Clin Neurosci. 2009;16(9):1148–52.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019;15(4):234–42.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Limousin P, et al. Bilateral subthalamic nucleus stimulation for severe PD. Mov Disord. 1995;10(5):672–4.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Limousin P, et al. Electrical stimulation of the subthalamic nucleus in advanced PD. N Engl J Med. 1998;339(16):1105–11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lozano AM. Vim thalamic stimulation for tremor. Arch Med Res. 2000;31(3):266–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Maltête D, et al. Microsubthalamotomy: an immediate predictor of long-term subthalamic stimulation efficacy in Parkinson disease. Mov Disord. 2008;23(7):1047–50.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Marjama-Lyons J, Koller W. Tremor-predominant Parkinson’s disease. Drugs Aging. 2000;16(4):273–8.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Matteau E, Dupré N, Langlois M, et al. Mattis Dementia Rating Scale 2. Am J Alzheimer’s Dis Other Dementiasr. 2011;26(5):389–98.Google Scholar
  68. Mavridis I, Boviatsis E, Anagnostopoulou S. Anatomy of the human subthalamic nucleus: a combined morphometric study. Anat Res Int. 2013;2013:319710.PubMedPubMedCentralGoogle Scholar
  69. Morishita T, et al. DBS candidates that fall short on a levodopa challenge test: alternative and important indications. Neurologist. 2011;17(5):263–8.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Müller T. Catechol-O-Methyltransferase inhibitors in PD. Drugs. 2015;75(2):157–74.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nelson AB, Kreitzer AC. Reassessing models of basal ganglia function and dysfunction. Annu Rev Neurosci. 2014;37:117–35.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Nowacki A, et al. Using MDEFT MRI sequences to target the GPi in DBS surgery. PLoS One. 2015;10(9):e0137868.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Odekerken VJJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced PD (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Odekerken VJJ, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology. 2016;86(8):755–61.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Okun MS, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–5.CrossRefGoogle Scholar
  76. Okun MS, et al. Cognition and mood in PD in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65(5):586–95.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Okun MS, et al. Subthalamic deep brain stimulation with a constant-current device in PD: an open-label randomised controlled trial. Lancet Neurol. 2012;11(2):140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Pahwa R, et al. Long-term evaluation of deep brain stimulation of the thalamus. J Neurosurg. 2006;104(4):506–12.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Parihar R, et al. Comparison of VIM and STN DBS for Parkinsonian resting and postural/action tremor. In: Tremor and other hyperkinetic movements, vol. 5. New York: Center for Digital Research and Scholarship; 2015. p. 321.Google Scholar
  80. Patel S, et al. Dopamine agonist withdrawal syndrome (DAWS) in a tertiary Parkinson disease treatment center. J Neurol Sci. 2017;379:308–11.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Patil PG, et al. The anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging. Neurosurgery. 2012;71(6):1089–95.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Pereira da Silva-Júnior F, et al. Amantadine reduces the duration of levodopa-induced dyskinesia: a randomized, double-blind, placebo-controlled study. Parkinsonism Relat Disord. 2005;11(7):449–52.CrossRefGoogle Scholar
  83. Pfeiffer RF. Non-motor symptoms in PD. Parkinsonism Relat Disord. 2016;22:S119–22.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pollo C, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(Pt 7):2015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Pringsheim T, et al. The prevalence of PD: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–90.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rabie A, Verhagen Metman L, Slavin K. Using “Functional” target coordinates of the subthalamic nucleus to assess the indirect and direct methods of the preoperative planning: do the anatomical and functional targets coincide? Brain Sci. 2016;6(4):65.CrossRefGoogle Scholar
  87. Rajput AH, et al. Course in Parkinson disease subtypes: a 39-year clinicopathologic study. Neurology. 2009;73(3):206–12.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Redgrave P, et al. Goal-directed and habitual control in the basal ganglia: implications for PD. Nat Rev Neurosci. 2010;11(11):760–72. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Reinacher PC, et al. One pass thalamic and subthalamic stimulation for patients with Tremor-Dominant Idiopathic Parkinson Syndrome (OPINION): protocol for a randomized, active-controlled, double-blinded pilot trial. JMIR Res Protocols. 2018;7(1):e36.CrossRefGoogle Scholar
  90. Rietdijk CD, et al. Exploring Braak’s hypothesis of PD. Front Neurol. 2017;8:37.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rodriguez RL, et al. Pearls in patient selection for deep brain stimulation. Neurologist. 2007;13(5):253–60.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Schaltenbrand G, Wahren W. Atlas for stereotaxy of the human brain. Thieme; 1977.Google Scholar
  93. Schapira AHV. Monoamine oxidase B inhibitors for the treatment of Parkinsonʼs disease. CNS Drugs. 2011;25(12):1061–71.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Schapira AH, Ray Chaudhuri K, Jenner P. Non-motor features of Parkinson disease. Nature Publishing Group; 2017, p. 18.Google Scholar
  95. Schuepbach WMM, et al. Neurostimulation for PD with early motor complications. N Engl J Med. 2013;368(7):610–22.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Schuurman PR, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342(7):461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Sensi M, et al. Explosive-aggressive behavior related to bilateral subthalamic stimulation. Parkinsonism Relat Disord. 2004;10(4):247–51.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Mov Disord. 2008;23(S3):S521–33.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Singleton AB. Synuclein Locus triplication causes PD. Science. 2003;302(5646):841.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Smeding HMM, et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology. 2006;66(12):1830–6. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Spillantini MG, et al. α-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Spottke EA, et al. Evaluation of healthcare utilization and health status of patients with PD treated with deep brain stimulation of the subthalamic nucleus. J Neurol. 2002;249(6):759–66.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Stowe R, et al. Dopamine agonist therapy in early PD. Cochrane Database Syst Rev. 2008;(2):CD006564.Google Scholar
  104. Taha JM, et al. Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with PD. J Neurosurg. 1996;85(6):1005–12.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Temperli P, et al. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology. 2003;60(1):78–81.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Thenganatt MA, Jankovic J. Parkinson disease subtypes. JAMA Neurol. 2014;71(4):499.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Vassal F, et al. Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimul. 2012;5(4):625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Verhagen R, Schuurman PR, van den Munckhof P, Contarino MF, de Bie RMA, Bour LJ. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images. J Neural Eng. 2016;13(6):066009.Google Scholar
  109. Vitek JL, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable PD. J Neurosurg. 2009;88(6):1027–43.CrossRefGoogle Scholar
  110. Wagle Shukla A, et al. DBS programming: an evolving approach for patients with PD. Parkinsons Dis. 2017;2017:1–11.CrossRefGoogle Scholar
  111. Weaver FM, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301(1):63–73.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Weaver FM, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79(1):55–65.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Welter ML, et al. Clinical predictive factors of subthalamic stimulation in PD. Brain. 2002;125(3):575–83.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Welter M-L, et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology. 2014;82(15):1352–61.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Williams ZM, et al. Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease. Exp Brain Res. 2005;162(4):407–16.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Williams A, et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced PD (PD SURG trial): a randomised, open-label trial. Lancet Neurol. 2010;9(6):581–91.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Williams NR, Foote KD, Okun MS. STN vs. GPi deep brain stimulation: translating the rematch into clinical practice. Move Dis Clin Pract. 2014;1(1):24–35.CrossRefGoogle Scholar
  118. Worth PF. When the going gets tough: how to select patients with PD for advanced therapies. Pract Neurol. 2013;13(3):140–52.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wu YR, et al. Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Mov Disord. 2001;16(2):208–16.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yamamoto T, et al. Long term follow-up on quality of life and its relationship to motor and cognitive functions in PD after deep brain stimulation. J Neurol Sci. 2017;379:18–21.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zaidel A, et al. Levodopa and subthalamic deep brain stimulation responses are not congruent. Mov Disord. 2010;25(14):2379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Zheng Z, et al. Stimulation-induced dyskinesia in the early stage after subthalamic deep brain stimulation. Stereotact Funct Neurosurg. 2010;88(1):29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zrinzo L, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116(1):84–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Timo R. ten Brinke
    • 1
  • Martijn Beudel
    • 1
  • Rob M. A. de Bie
    • 1
    Email author
  1. 1.Department of NeurologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations