Estimating the Effect that Interactions Between Chemical Reactions and Environmental Influences Have on the Corrosivity of the Electrolyte

  • Steven A. PolicastroEmail author
  • Rachel M. Anderson
  • Carlos M. Hangarter
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The properties of electrolytes formed from atmospheric processes, whether thin films or droplets, change in response to changes in the environment. Specifically, temperature and relative humidity changes can induce condensation or evaporation directly or indirectly alter the concentrations of dissolved oxygen, alter the solution conductivity, or speed up or slow down chemical reactions, which can alter the corrosivity of the electrolyte. In this work, we develop a numerical model of the galvanic couple between a stainless steel and aluminum alloy exposed to a thin film electrolyte equilibrating to different temperature and relative humidity conditions, and we examine how changes in solution resistivity, dissolved oxygen concentration, and chemical reactions in the electrolyte change the corrosion current in the galvanic couple. We then compare these results to some experimental measurements made on a similar galvanic couple in a controlled humidity and temperature chamber.


Atmospheric corrosion Galvanic corrosion Corrosion simulation 



This work was sponsored by the US Naval Research Laboratory under its core program; the views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Office of Naval Research, the US Navy or the US government.


  1. 1.
    Wang S-S, Frankel GS, Jiang J-T, Chen J-F, Dai S-L, Zhen L (2013) J Electrochem Soc 160:C493–C502CrossRefGoogle Scholar
  2. 2.
    Matzdorf CA, Nickerson WC, Rincon Troconis BC, Frankel GS, Li L, Buchheit RG (2013) Corrosion 69:1240–1246Google Scholar
  3. 3.
    Feng Z, Frankel GS (2013) Corrosion 70:95–106CrossRefGoogle Scholar
  4. 4.
    CRC Handbook of Chemistry, and Physics (1989) 70th Edition, Weast RC (Ed) CRC Press, Boca Raton, FL, p D-221Google Scholar
  5. 5.
    Brett CMA, Brett AM (1993) Electrochemistry: principles, methods, and applications, Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Guseva O, Schmutz P, Suter T, von Trzebiatowski O (2009) Electrochim Acta 54:4514–4524CrossRefGoogle Scholar
  7. 7.
    Guseva O, DeRose JA, Schmutz P (2013) Electrochim Acta 88:821–831CrossRefGoogle Scholar
  8. 8.
    Crank J, Nicolson P (1996) Adv Comput Math 6:207–226CrossRefGoogle Scholar
  9. 9.
    Simillion H, Van den Steen N, Terryn H, Deconinck J (2016) Electrochim Acta 209:149–158CrossRefGoogle Scholar
  10. 10.
    Van den Steen N, Simillion H, Dolgikh O, Terryn H, Deconinck J (2016) Electrochim Acta 187:714–723CrossRefGoogle Scholar
  11. 11.
    Hangarter CM, Policastro SA (2017) Atmos Marine Corr 75:11–22Google Scholar
  12. 12.
    Policastro S, Anderson R, Hangarter C, Horton DJ, Keith JA, Groenenboom MC (2017) ECS Trans 80:527–539CrossRefGoogle Scholar
  13. 13.
    Policastro Steven A, Hangarter Carlos M, Anderson Rachel M, Friedersdorf F (2019) Effect of confined electrolyte volumes on galvanic corrosion kinetics in statically loaded materials. Corr Rev 37:521Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Steven A. Policastro
    • 1
    Email author
  • Rachel M. Anderson
    • 1
  • Carlos M. Hangarter
    • 1
  1. 1.US Naval Research LaboratoryCenter for Corrosion Science and EngineeringWashington, D.C.USA

Personalised recommendations