Advertisement

Effect of Ni–Nb Metallic Glass on Moderating the Shock Damage in Crystalline Ni-Amorphous Ni62Nb38 Nanocomposite Structure: A Molecular Dynamics Study

  • K. Vijay ReddyEmail author
  • Snehanshu Pal
Conference paper
  • 625 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Due to high strength and better corrosion properties, Ni-based alloy components are used in different machineries that are exposed to extreme/impact loading conditions. Structural re-designing of this metallic system can improve their impact resistance and bearing capacity. In this perspective, we have performed molecular dynamics simulation to analyze the effect of Ni–Nb metallic glass on attenuating the shock damage in crystalline Ni-amorphous Ni–Nb nanolaminate structure. Results have shown that the Ni62Nb38 metallic glass has effectively mitigated the damage in the crystalline Ni region at 0.5 and 0.8 km/s. Structurally, Ni62Nb38 metallic glass has shown better stability as higher icosahedral clusters are observed when compared with other Ni–Nb glass compositions after the shock propagation. However, at higher shock velocities, the presence of amorphous phase in the nanolaminate is insignificant as the shock causes large dislocation generation and localized amorphization.

Keywords

Ni-based alloys Metallic glass Nanolaminate Molecular dynamics 

References

  1. 1.
    Sun C, Kirk M, Li M, Hattar K, Wang Y, Anderoglu O, Valdez J, Uberuaga BP, Dickerson R, Maloy SA (2015) Microstructure, chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature. Acta Mater 95:357–365CrossRefGoogle Scholar
  2. 2.
    Caron P, Khan T (1999) Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol 3(8):513–523CrossRefGoogle Scholar
  3. 3.
    El-Awadi GA, Abdel-Samad S, Elshazly ES (2016) Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys. Appl Surf Sci 378:224–230CrossRefGoogle Scholar
  4. 4.
    Özgün Ö, Yılmaz R, Gülsoy HÖ, Fındık F (2015) The effect of aging treatment on the fracture toughness and impact strength of injection molded Ni-625 superalloy parts. Mater Charact 108:8–15CrossRefGoogle Scholar
  5. 5.
    Lin YC, Deng J, Jiang YQ, Wen DX, Liu G (2014) Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater Des 55:949–957CrossRefGoogle Scholar
  6. 6.
    Hong HU, Kang JG, Choi BG, Kim IS, Yoo YS, Jo CY (2011) A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy. Int J Fatigue 33(12):1592–1599CrossRefGoogle Scholar
  7. 7.
    Wang Y, Li J, Hamza AV, Barbee TW (2007) Ductile crystalline–amorphous nanolaminates. Proc Natl Acad Sci 104(27):11155–11160CrossRefGoogle Scholar
  8. 8.
    Kim JY, Jang D, Greer JR (2011) Nanolaminates utilizing size-dependent homogeneous plasticity of metallic glasses. Adv Funct Mater 21(23):4550–4554CrossRefGoogle Scholar
  9. 9.
    Cui Y, Huang P, Wang F, Lu TJ, Xu KW (2015) The hardness and related deformation mechanisms in nanoscale crystalline–amorphous multilayers. Thin Solid Films 584:270–276CrossRefGoogle Scholar
  10. 10.
    Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5(1):1–19CrossRefGoogle Scholar
  11. 11.
    Reddy KV, Deng C, Pal S (2019) Dynamic characterization of shock response in crystalline-metallic glass nanolaminates. Acta Mater 164:347–361CrossRefGoogle Scholar
  12. 12.
    Reddy KV, Pal S (2017) Contribution of Nb towards enhancement of glass forming ability and plasticity of Ni–Nb binary metallic glass. J Non-Cryst Solids 471:243–250CrossRefGoogle Scholar
  13. 13.
    Wang ZM, Zhang J, Chang XC, Hou WL, Wang JQ (2010) Structure inhibited pit initiation in a Ni–Nb metallic glass. Corros Sci 52(4):1342–1350CrossRefGoogle Scholar
  14. 14.
    Tai KP, Wang LT, Liu BX (2007) Distinct atomic structures of the Ni–Nb metallic glasses formed by ion beam mixing. J Appl Phys 102(12):124902CrossRefGoogle Scholar
  15. 15.
    Hai L, Jie H, Zhi-xuan Z, Zhao-xia M (2017) Atomistic simulations of elastic-plastic deformation in nickel single crystal under shock loading. Procedia Eng 204:397–404CrossRefGoogle Scholar
  16. 16.
    Gunkelmann N, Bringa EM, Tramontina DR, Ruestes CJ, Suggit MJ, Higginbotham A, Wark JS, Urbassek HM (2014) Shock waves in polycrystalline iron: plasticity and phase transitions. Phys Rev B 89(14):140102CrossRefGoogle Scholar
  17. 17.
    Ye C, Liu Y, Sang X, Ren Z, Zhao J, Hou X, Dong Y (2015) Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening. J Appl Phys 118(13):134902CrossRefGoogle Scholar
  18. 18.
    Zhao S, Germann TC, Strachan A (2006) Atomistic simulations of shock-induced alloying reactions in Ni∕Al nanolaminates. J Chem Phys 125(16):164707CrossRefGoogle Scholar
  19. 19.
    Han WZ, Misra A, Mara NA, Germann TC, Baldwin JK, Shimada T, Luo SN (2011) Role of interfaces in shock-induced plasticity in Cu/Nb nanolaminates. Philos Mag 91(32):4172–4185CrossRefGoogle Scholar
  20. 20.
    Han WZ, Cerreta EK, Mara NA, Beyerlein IJ, Carpenter JS, Zheng SJ, Trujillo CP, Dickerson PO, Misra A (2014) Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater 63:150–161CrossRefGoogle Scholar
  21. 21.
    Jian WR, Wang L, Yao XH, Luo SN (2018) Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: effects of layer thickness and interface type. Comput Mater Sci 154:225–233CrossRefGoogle Scholar
  22. 22.
    Nasim M, Li Y, Wen C (2019) Individual layer thickness-dependent microstructures and mechanical properties of fcc/fcc Ni/Al nanolaminates and their strengthening mechanisms. Materialia 6:100347CrossRefGoogle Scholar
  23. 23.
    Bataev IA, Hokamoto K, Keno H, Bataev AA, Balagansky IA, Vinogradov AV (2015) Metallic glass formation at the interface of explosively welded Nb and stainless steel. Met Mater Int 21(4):713–718CrossRefGoogle Scholar
  24. 24.
    Xiang H, Li H, Fu T, Zhu W, Huang C, Yang B, Peng X (2018) Shock-induced stacking fault pyramids in Ni/Al multilayers. Appl Surf Sci 427:219–225CrossRefGoogle Scholar
  25. 25.
    Zhang RF, Germann TC, Wang J, Liu XY, Beyerlein IJ (2013) Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: non-equilibrium molecular dynamics simulations. Scr Mater 68(2):114–117CrossRefGoogle Scholar
  26. 26.
    Yu P, Kim KB, Das J, Baier F, Xu W, Eckert J (2006) Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite. Scr Mater 54(8):1445–1450CrossRefGoogle Scholar
  27. 27.
    Xia L, Li WH, Fang SS, Wei BC, Dong YD (2006) Binary Ni–Nb bulk metallic glasses. J Appl Phys 99:026103CrossRefGoogle Scholar
  28. 28.
    Xu TD, Wang XD, Zhang H, Cao QP, Zhang DX, Jiang JZ (2017) Structural evolution and atomic dynamics in Ni–Nb metallic glasses: a molecular dynamics study. J Chem Phys 147(14):144503CrossRefGoogle Scholar
  29. 29.
    Ma Y, Ye JH, Peng GJ, Wen DH, Zhang TH (2015) Nanoindentation study of size effect on shear transformation zone size in a Ni–Nb metallic glass. Mater Sci Eng A 627:153–160CrossRefGoogle Scholar
  30. 30.
    Sarker S, Isheim D, King G, An Q, Chandra D, Morozov SI, Page K, Wermer JN, Seidman DN, Dolan M (2018) Icosahedra clustering and short range order in Ni–Nb–Zr amorphous membranes. Sci Rep 8(1):6084CrossRefGoogle Scholar
  31. 31.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Ashcraft R, Mendelev MI, Wang CZ, Kelton KF (2016) Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J Chem Phys 145(20):204505CrossRefGoogle Scholar
  33. 33.
    Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012CrossRefGoogle Scholar
  34. 34.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085CrossRefGoogle Scholar
  35. 35.
    Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963CrossRefGoogle Scholar
  36. 36.
    Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007CrossRefGoogle Scholar
  37. 37.
    Rogachev AS, Vadchenko SG, Aronin AS, Rouvimov S, Nepapushev AA, Kovalev ID, Baras F, Politano O, Rogachev SA, Mukasyan AS (2017) Self-propagating waves of crystallization in metallic glasses. Appl Phys Lett 111(9):093105CrossRefGoogle Scholar
  38. 38.
    Belouarda K, Trady S, Saadouni K, Mazroui M (2019) Influence of mechanical tensile and compression tests under high strain rate on structural properties of copper monatomic metallic glass. Eur Phys J B 92(3):50CrossRefGoogle Scholar
  39. 39.
    Tong X, Wang G, Stachurski ZH, Bednarčík J, Mattern N, Zhai QJ, Eckert J (2016) Structural evolution and strength change of a metallic glass at different temperatures. Sci Rep 6:30876CrossRefGoogle Scholar
  40. 40.
    Liang YC, Liu RS, Mo YF, Liu HR, Tian ZA, Zhou QY, Zhang HT, Zhou LL, Hou ZY, Peng P (2014) Influence of icosahedral order on the second peak splitting of pair distribution function for Mg70Zn30 metallic glass. J Alloys Compd 597:269–274CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations