Effect of Nanoclay Reinforcement on the Property of Rubber Seed Oil Polyurethane Nanocomposites

  • E. O. ObazeeEmail author
  • F. E. Okieimen
  • A. I. Aigbodion
  • I. O. Bakare
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Rubber seed oil derived polyol was used in preparing polyurethane nanocomposites by incorporation of surface-modified montmorillonite, MMT, or organoclay, containing 25–30 wt% methyl dihydroxyethyl hydrogenated tallow ammonium) as reinforcement at 1%, 3%, and 5% loading, using hexamethylene diisocyanate (HMDI), 4,4’-methylene-bis(phenylisocyanate) (MDI) to obtain PHM (1, 3, and 5), and PMM (1, 3, and 5), respectively. The physical, mechanical, and morphological properties of the obtained nanocomposites with respect to its neat polyurethane were investigated using x-ray studies (WAXD), nanoindenter (NI), universal testing machine (UTM), Fourier-transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and the thermal stability studies determined with thermogravimetric analyzer (TGA). The incorporation of reinforcement led to improvement in some of the properties of the nanocomposites, especially when there was delamination of the MMT in the polymer matrix.


Rubber seed oil polyol Polyurethane Nanocomposites Modified montmorillonite Properties 



The authors wish to acknowledge the Director of Indian Institute of Technology Mandi, Himachal Pradesh, India, for providing the laboratory, chemicals, and the research internship for this study, and the Executive Director of Rubber Research Institute of Nigeria for the leave granted EOO.


  1. 1.
    Sardon H, Pascual A, Mecerreyes D, Taton D, Cramail H, Hedrick JL (2015) Synthesis of polyurethanes using organocatalysis: a perspective. Macromol 48(10):3153–3167.
  2. 2.
    Lligadas G, Ronda RC, Galia M, Biermann U, Metzger JO (2006) Synthesis and characterization of polyurethane from epoxidized methyl oleate based polyether polyol as renewable resources. J Polym Sci Part A Polym Chem 44:634–645CrossRefGoogle Scholar
  3. 3.
    Maji PK, Guchhait PK, Bhowmick AK (2009) Effect of nanoclays on physico-mechanical properties and adhesion of polyester-based polyurethane nanocomposites: structure–property correlations. J Mater Sci 2009(44):5861–5871CrossRefGoogle Scholar
  4. 4.
    Pashaei S, Hosseinzadeh S (2014) Modification in physical properties of organo clay filled polyurethane nanocomposites. Polym Sci Ser A 56(6):874–883Google Scholar
  5. 5.
    Schollenberger SC (2001) In: Bhowmick AK, Stephens HL (eds) Handbook of elastomers, 2nd edn. Marcel Dekker Inc., USAGoogle Scholar
  6. 6.
    Thuc CNH, Cao HT, Nguyen DM, Tran MA, Duclaux L, Grillet A-C, Thuc HH (2014) Preparation and characterization of polyurethane nanocomposites using vietnamese montmorillonite modified by polyol surfactants. J Nanomater, Article ID 302735, 1–11.
  7. 7.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184CrossRefGoogle Scholar
  8. 8.
    Nunes RCR, Fonseca JLC, Pereira MR (2000) Polymer–filler interactions and mechanical properties of a polyurethane elastomer. Polym Test 19:93–103CrossRefGoogle Scholar
  9. 9.
    Lu Y, Larock RC (2006) Novel biobased nanocomposites from soybean oil and functionalized organoclay. Biomacromol 7:2692–2700CrossRefGoogle Scholar
  10. 10.
    Ryszkowska J, Zawadzak EA, Łojkowski W, Opalińska A, Kurzydłowski KJ (2007) Structure and properties of polyurethane nanocomposites with zirconium oxide including Eu. Mater Sci Eng C 27:994–997CrossRefGoogle Scholar
  11. 11.
    Gacitua WE, Ballerini AA, Zhang Jinwen (2005) Polymer nanocomposites: synthetic and natural fillers. Maderas Ciencia Y Technol 7(3):159–178Google Scholar
  12. 12.
    Chu C-C, Chiang M-L, Tsai C-M, Lin J-J (2005) Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts. Macromolecules 38:6240–6243CrossRefGoogle Scholar
  13. 13.
    Wang C, Ding D, Wua Q, Liu F, Wei J, Lu R, Xieb H, Chen R (2014) Soy polyol-based polyurethane modified by raw and silylated palygorskite. Ind Crops Prod 57:29–34CrossRefGoogle Scholar
  14. 14.
    Konwar U, karak N, Mandal M, Mesuaferrea L (2009) Seed oil based highly thermostable and biodegradable polyester/clay nanocomposites. Polym Degrad Stab 94:2221–2230Google Scholar
  15. 15.
    Shiraz NZ, Enferad E, Monfared A, Mojarrad MA (2013) Preparation of nanocomposite based on exfoliation of montmorillonite in acrylamide thermosensitive polymer. ISRN Polym Sci, Article ID 280897, 1–5.
  16. 16.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63CrossRefGoogle Scholar
  17. 17.
    de Paiva LB, Morales AR, Díaz FRV (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42:8–24CrossRefGoogle Scholar
  18. 18.
    He H, Ma L, Zhua J, Frost RL, Theng BKG, Bergaya F (2014) Synthesis of organoclays: a critical review and some unresolved issues. Appl Clay Sci 100:22–28CrossRefGoogle Scholar
  19. 19.
    Sari MG, Ramezanzadeh B, Shahbazi M, Pakdel AS (2015) Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposites. Corros Sci 92:162–172CrossRefGoogle Scholar
  20. 20.
    Fridrihsone A, Stirna U, Lazdina B, Misane M, Vilsone D (2013) Characterization of polyurethane network structure and properties based on rapeseed oil derived polyol. Eur Polym J 49:1204–1214CrossRefGoogle Scholar
  21. 21.
    Pechar TW, Wilkes GJ, Zhou B, Lou N (2007) Characterization of soy-based polyurethane networks prepared with different diisocyanates and their blends with petroleum-based polyol. J Appl Polym Sci 106:2350–2362CrossRefGoogle Scholar
  22. 22.
    Petrovic ZS, Yang L, Zlatanic A, Zhang W, Javni I (2007) Network structure and properties of polyurethanes from soybean oil. J Appl Polym Sci 105:717–2727CrossRefGoogle Scholar
  23. 23.
    Kong X, Narine SS (2008) Physical properties of sequential interpenetrating polymer network produced from canola oil-based polyurethane and poly(methyl methacrylate). Biomacromol 9:1424–1433CrossRefGoogle Scholar
  24. 24.
    Lyon CK, Garrett VH, Frankel EN (1974) Rigid urethane foams from hydroxymethylated castor oil, safflower oil, oleic safflower oil, and polyol ester of castor acid. J Am Oil Chem Soc, 331–334Google Scholar
  25. 25.
    Okieimen FE, Bakare IO (2007) Rubber seed oil-based polyurethane composites, fabrication and properties evaluation. Adv Mater Res 18–19:233–239CrossRefGoogle Scholar
  26. 26.
    Ferrer CC, Babb D, Ryan AJ (2008) Characterization of polyurethane networks based on vegetable derived polyol. Polymer 49:3279–3287CrossRefGoogle Scholar
  27. 27.
    Obazee EO (2018) Biobased polymers and nanocomposites from modified rubber seed oil. PhD Thesis, University of Benin, Benin CityGoogle Scholar
  28. 28.
    Varlot K, Reynaud E, Kloppfer MH, Vigier G, Varlet J (2001) Clay–reinforced polyamide: preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. J Polym Sci, Part B Polym Phys 39:1360–1370CrossRefGoogle Scholar
  29. 29.
    Chin I-J, Thurn-Albrecht T, Kim H-C, Russell TP, Wang J (2001) On exfoliation of montmorillonite in epoxy. Polymer 42:5947–5952Google Scholar
  30. 30.
    Ionescu M (2005) Chemistry and technology of polyols for polyurethanes, Chap. 17. Rapra Technology Limited, UKGoogle Scholar
  31. 31.
    Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw Hill, NY, pp 1–20, 61–76Google Scholar
  32. 32.
    Jahanmardi R, Kangarlou B, Dibazar AR (2013) Effect of organically modified nanoclay on cellular morphology, tensile properties, and dimensional stability of flexible polyurethane foams. J Nanostruct Chem 3(82):1–6Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • E. O. Obazee
    • 1
    Email author
  • F. E. Okieimen
    • 2
  • A. I. Aigbodion
    • 1
  • I. O. Bakare
    • 1
  1. 1.Rubber Research Institute of NigeriaBenin CityNigeria
  2. 2.Department of Chemistry & Center for Biomaterials ResearchUniversity of BeninBenin CityNigeria

Personalised recommendations