Low-Temperature Synthesis of Superparamagnetic Fe3O4 Morphologies Tuned Using Oleic Acid as Crystal Growth Modifiers

  • Stanley O. Omorogbe
  • Areguamen I. Aigbodion
  • Hilary I. Ifijen
  • Aline Simo
  • Nosa L. Ogbeide-Ihama
  • Esther U. IkhuoriaEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Several strategies have been established for the synthesis of magnetic nanoparticles with tunable sizes, morphologies, and magnetic properties. Most of these reports are based on synthesis of magnetic nanoparticles that involve use of environmentally malignant organic solvents and high temperature conditions. Many applications do not require precise control of particle morphology extreme reaction conditions, but with excellent magnetic properties. Here we present a facile, rapid, low temperature approach to synthesize crystalline Fe3O4 mesostructures with high magnetic properties via a microwave-assisted sonochemical method and studied the effects of conventional crystal growth modifiers: oleic acid (OA, long-chain fatty acid) in the evolution of Fe3O4 morphology. We observed that the transmission electron microscopy (TEM) investigations for OA as crystal growth modifier resulted in primary nanocrystals of hexagonal prism-like morphologies. The as-synthesized Fe3O4 exhibit superparamagnetic properties with high saturation magnetization and have no residual magnetism. Further, the cytotoxicity analysis of as-synthesized samples on H9c2 cells revealed that the samples were safe to cells at higher concentrations. Magnetite nanoparticles with high saturation magnetization are required for enhanced MRI detection, cancer treatment (magnetic hyperthermia), etc.


Superparamagnetic Magnetite nanoparticles Growth modifiers Fe3O4 



M. R. Chandran and SoumyaValsalam are acknowledged for SEM acquisition and Kiran Mohan is acknowledged for TEM image acquisition. We thank Dr. K. G. K. Warrier (CSIR-NIIST) and Prof. Lennart Bergström (Stockholm University, Sweden) for fruitful discussions. Prof. E. U. Ikhuoria and Dr. Stanley O. Omorogbe thank TWAS-13-207RG/CHE/AF/AC_G-UNESCO FR; 3240277727 for financial support. This research was supported by CSIR network projects (CSIR’s NWP IntelCoat and M2D) and DAE-BRNS (Sanction No. 2012/34/62/BRNS) grants.


  1. 1.
    Tachikawa T, Majima T (2014) Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater 6:e100CrossRefGoogle Scholar
  2. 2.
    Shukla A, Degen P, Rehage H (2007) Synthesis and characterization of monodisperse poly(organosiloxane) nanocapsules with or without magnetic cores. J Am Chem Soc 129:8056–8057CrossRefGoogle Scholar
  3. 3.
    Smolensky ED, Neary MC, Zhou Y, Berquo TS, Pierre VC (2011) Fe3O4@organic@Au: core-shell nanocomposites with high saturation magnetisation as magnetoplasmonic MRI contrast agents. Chem Commun 47:2149–2151CrossRefGoogle Scholar
  4. 4.
    Wang R, Xu C, Sun J, Gao L (2014) Three-dimensional Fe(2)O(3) nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Sci Rep 4:7171CrossRefGoogle Scholar
  5. 5.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  6. 6.
    Ravikumar C, Bandyopadhyaya R (2011) Mechanistic study on magnetite nanoparticle formation by thermal decomposition and coprecipitation routes. J Phys Chem C 115:1380–1387CrossRefGoogle Scholar
  7. 7.
    Lenders JJM, Altan CL, Bomans PHH, Arakaki A, Bucak S, de With G, Sommerdijk NAJM (2014) A bioinspired coprecipitation method for the controlled synthesis of magnetite nanoparticles. Cryst Growth Des 14:5561–5568CrossRefGoogle Scholar
  8. 8.
    Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350–2365CrossRefGoogle Scholar
  9. 9.
    Dong A, Chen J, Oh SJ, Koh W-K, Xiu F, Ye X, Ko D-K, Wang KL, Kagan CR, Murray CB (2011) Multiscale periodic assembly of striped nanocrystal superlattice films on a liquid surface. Nano Lett 11:841–846CrossRefGoogle Scholar
  10. 10.
    Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 886–888Google Scholar
  11. 11.
    Hu X, Yu JC, Gong J, Li Q, Li G (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19:2324–2329CrossRefGoogle Scholar
  12. 12.
    Koenig M, Torres T, Barone V, Brancato G, Guldi DM, Bottari G (2014) Ultrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission. Chem Commun 50:12955–12958CrossRefGoogle Scholar
  13. 13.
    Kumar RV, Koltypin Y, Xu XN, Yeshurun Y, Gedanken A, Felner I (2001) Fabrication of magnetite nanorods by ultrasound irradiation. J Appl Phys 89:6324–6328CrossRefGoogle Scholar
  14. 14.
    Bergström L, Sturm EV, Salazar-Alvarez G, Cölfen H (2015) Mesocrystals in biominerals and colloidal arrays. Acc Chem Res 48:1391–1402CrossRefGoogle Scholar
  15. 15.
    Kumar M, Luo H, Román-Leshkov Y, Rimer JD (2015) SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J Am Chem Soc 137:13007–13017CrossRefGoogle Scholar
  16. 16.
    Pai RK, Pillai S (2007) Water-soluble terpolymer directs the hollow triangular cones of packed calcite needles. Cryst Growth Des 7:215–217CrossRefGoogle Scholar
  17. 17.
    Osim W, Stojanovic A, Akbarzadeh J, Peterlik H, Binder WH (2013) Surface modification of MoS2 nanoparticles with ionic liquid-ligands: towards highly dispersed nanoparticles. Chem Commun 49:9311–9313CrossRefGoogle Scholar
  18. 18.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  19. 19.
    Ahniyaz A, Sakamoto Y, Bergström L (2007) Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proc Natl Acad Sci 104:17570–17574CrossRefGoogle Scholar
  20. 20.
    Han DH, Wang JP, Luo HL (1994) Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J Magn Magn Mater 136:176–182CrossRefGoogle Scholar
  21. 21.
    Bhuyan D, Arbuj SS, Saikia L (2015) Template-free synthesis of Fe3O4 nanorod bundles and their highly efficient peroxidase mimetic activity for the degradation of organic dye pollutants with H2O2. New J Chem 39:7759–7762CrossRefGoogle Scholar
  22. 22.
    Pai RK, Pillai S (2006) Water-soluble terpolymer directs the hollow triangular cones of packed calcite needles. Cryst Growth Des 7:215–217CrossRefGoogle Scholar
  23. 23.
    Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125CrossRefGoogle Scholar
  24. 24.
    Singh G, Chan H, Baskin A, Gelman E, Repnin N, Král P, Klajn R (2014) Self-assembly of magnetite nanocubes into helical superstructures. Science 345:1149–1153CrossRefGoogle Scholar
  25. 25.
    Disch S, Wetterskog E, Hermann RP, Korolkov D, Busch P, Boesecke P, Lyon O, Vainio U, Salazar-Alvarez G, Bergstrom L, Bruckel T (2013) Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. Nanoscale 5:3969–3975CrossRefGoogle Scholar
  26. 26.
    Pillai S, Hemmersam AG, Mukhopadhyay R, Meyer RL, Moghimi SM, Besenbacher F, Kingshott P (2009) Tunable 3D and 2D polystyrene nanoparticle assemblies using surface wettability, low volume fraction and surfactant effects. Nanotechnology 20:025604CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Stanley O. Omorogbe
    • 1
  • Areguamen I. Aigbodion
    • 1
  • Hilary I. Ifijen
    • 1
  • Aline Simo
    • 3
  • Nosa L. Ogbeide-Ihama
    • 4
  • Esther U. Ikhuoria
    • 2
    Email author
  1. 1.Product Development Laboratory, Research Operations DepartmentRubber Research Institute of NigeriaBenin CityNigeria
  2. 2.Department of ChemistryUniversity of BeninBenin CityNigeria
  3. 3.University of South AfricaPretoriaSouth Africa
  4. 4.Quality Control DepartmentGuinness Nigeria PLCBenin CityNigeria

Personalised recommendations