Portland 3D Printing of Portland Cement Pastes with Additions of Kaolin, Superplastificant, and Calcium Carbonate

  • Luis A. Vergara
  • Henry A. ColoradoEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The main goal in this investigation is to develop inexpensive formulations of Portland cement pastes for additive manufacturing using the direct ink writing technique. Kaolin, a superplastificant, and calcium carbonate additions were used as additives and modifiers of the printing material. A total of 3 formulations were developed with acceptable shape stability and finishing of the manufactured parts. Cylindrical samples of 17 mm in diameter and 26 mm of height were built in order to be tested in compression tests. The microstructure was characterized with scanning electron microscopy, density, and compression tests. Results showed one formulation to be the best one, which was associated mainly to an optimal kaolin content as rheology regulator.


3D printing Additive manufacturing Portland cement Mortar Kaolin, direct ink writing 


  1. 1.
    Portafolio (2016) El sector constructor está pasando el año en ColombiaGoogle Scholar
  2. 2.
    Agudelo HA, Hernández AV, Cardona DAR (2012) Sostenibilidad: Actualidad y necesidad en el sector de la construcción en Colombia. Gestión y Ambient 15:105–118Google Scholar
  3. 3.
    Tattersall GH (1991) Workability and quality control of concrete, 1st edn. Taylor & Francis GroupGoogle Scholar
  4. 4.
    Nilson AH, Winter G, Urquhart LC, Charles Edward O (1999) Diseño de estructuras de concreto. McGraw-HillGoogle Scholar
  5. 5.
    Li Z, Xiao L, Wei X (2007) Determination of concrete setting time using electrical resistivity measurement. J Mater Civ Eng 19:423–427CrossRefGoogle Scholar
  6. 6.
    Papayianni I, Tsohos G, Oikonomou N, Mavria P (2005) Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures. Cement Concr Compos 27(2):217–222CrossRefGoogle Scholar
  7. 7.
    Kosmatka SH, Panarese WC, Kerkhoff B (2002) Design and control of concrete mixtures, vol 5420. Portland Cement Association, Skokie, ILGoogle Scholar
  8. 8.
    Lloret E, Shahab AR, Linus M, Flatt RJ, Gramazio F, Kohler M, Langenberg S (2015) Complex concrete structures. Comput Aided Des 60:40–49CrossRefGoogle Scholar
  9. 9.
    Harmsen TE (2005) Diseño de estructuras de concreto armado. Fondo editorial PUCPGoogle Scholar
  10. 10.
    Skibicki S (2017) Optimization of cost of building with concrete slabs based on the maturity method. In: IOP conference series: materials science and engineering, vol 245Google Scholar
  11. 11.
    Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196CrossRefGoogle Scholar
  12. 12.
    Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1)Google Scholar
  13. 13.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRefGoogle Scholar
  14. 14.
    Schwentenwein M, Homa J (2014) Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Technol 12(1):1–7CrossRefGoogle Scholar
  15. 15.
    Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290CrossRefGoogle Scholar
  16. 16.
    Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458CrossRefGoogle Scholar
  17. 17.
    Sun J, Zhou W, Huang D, Fuh JYH, Hong GS (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8(8):1605–1615CrossRefGoogle Scholar
  18. 18.
    Duda T, Raghavan LV (2016) 3D metal printing technology. IFAC-PapersOnLine 49(29):103–110CrossRefGoogle Scholar
  19. 19.
    Rael R, San Fratello V (2011) Material design and analysis for 3D-printed fiberreinforced cement polymer building components. In: Conference Ambience ’11, pp 136–139Google Scholar
  20. 20.
    Ivorra S, Garcés P, Catalá G, Andión LG, Zornoza E (2010) Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete. Mater Des 31(3):1553–1558CrossRefGoogle Scholar
  21. 21.
    Gołaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behaviour of fresh cement mortars. Cem Concr Res 34(2):235–248CrossRefGoogle Scholar
  22. 22.
    Öztürk IE (2018) The future of 3D printing technology in the construction industry: a systematic literature review. Eurasian J Civil Eng Archit 2(2)Google Scholar
  23. 23.
    Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyping 11(3):209–225CrossRefGoogle Scholar
  24. 24.
    Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246CrossRefGoogle Scholar
  25. 25.
    Ma G, Wang L (2017) A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front Struct Civil Eng 12(3):382–400CrossRefGoogle Scholar
  26. 26.
    Lee J-Y, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRefGoogle Scholar
  27. 27.
    Wu P, Wang J, Wang X (2016) A critical review of the use of 3-D printing in the construction industry. Autom Constr 68:21–31CrossRefGoogle Scholar
  28. 28.
    Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cement and Concrete ResearchGoogle Scholar
  29. 29.
    Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys. Prototyping 11:209–225CrossRefGoogle Scholar
  30. 30.
    Revelo CF, Colorado HA (2018) 3D printing of kaolinite clay ceramics using the Direct Ink Writing (DIW) technique. Ceram Int 44(5):5673–5682CrossRefGoogle Scholar
  31. 31.
    Ordoñez E, Gallego JM, Colorado HA (2019) 3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry. Appl Clay Sci 182:105285CrossRefGoogle Scholar
  32. 32.
    Restrepo JJ, Colorado HA (2019) Additive manufacturing of composites made of epoxy resin with magnetite particles fabricated with the direct ink writing technique. J Compos Mater, 0021998319865019Google Scholar
  33. 33.
    Mejia R, Torres J (2007) Influencia de la composición mineralógica de los caolines sobre el desempeño de morteros adicionados con mk. DYNA 74(153):61–67Google Scholar
  34. 34.
    Shen J, Xie Z (2012) Effects of kaolin on the engineering properties of Portland cement concrete. Appl Mech Mater 174:76–81CrossRefGoogle Scholar
  35. 35.
    Bu J, Tian Z, Zheng S (2017) Effect of sand content on strength and pore structure of cement mortar. J Wuhan Univ Technol-Mater Sci Ed 32:382–390Google Scholar
  36. 36.
    Yalley PP, Sam A (2018) Effect of sand fines and water/cement ratio on concrete properties. Civil Eng Res J 4Google Scholar
  37. 37.
    Gosselin C, Duballet R, Roux P (2016) Large-scale 3D printing of ultra-high performance concrete—a new processing route for architects and builders. Mater Des 100:102–109Google Scholar
  38. 38.
    Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268CrossRefGoogle Scholar
  39. 39.
    Shen J, Xie Z (2012) Effects of kaolin on the engineering properties of Portland cement concrete. Appl Mech Mater 174:76–81CrossRefGoogle Scholar
  40. 40.
    Tsivilis S, Batis G (2000) Properties and behavior of limestone cement concrete and mortar. Cement Concr Res 30Google Scholar
  41. 41.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cement Concr Res 38(6):848–860Google Scholar
  42. 42.
    Bu J, Tian Z (2017) Effect of sand content on strength and pore structure of cement mortar. J Mater Sci 32:382–390Google Scholar
  43. 43.
    Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cement Concr Res 33:579–584Google Scholar
  44. 44.
    Courard L, Darimont A (2003) Durability of mortars modified with metakaolin. Cement Concr Res 33Google Scholar
  45. 45.
    Malaeb Z, Hachem H (2015) 3D concrete printing: machine and mix design. Int J Civil Eng Technol 6:14–22Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.CCComposites LabUniversidad de Antioquia (UdeA)MedellínColombia
  2. 2.Facultad de IngenieríaUniversidad de AntioquiaMedellínColombia

Personalised recommendations