Advertisement

Oxidation Kinetics of Palladium

  • Stephen Rubin
  • Nuggehalli M. RavindraEmail author
Conference paper
  • 626 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The kinetics of oxidation of palladium is investigated in this study. The effects of temperature and pressure on the oxide growth of palladium are discussed. A study of the linear regime of palladium oxidation data is examined, and regression analysis is utilized to analyze the oxidation of palladium. Comparison of the oxidation kinetics of palladium is made with that of ruthenium, rhodium and silver.

Keywords

Oxidation kinetics Temperature Pressure Palladium Ruthenium Rhodium Silver 

References

  1. 1.
    Winter M (1993) Ruthenium. In: Webelements. https://www.webelements.com/ruthenium/. Accessed 6 Sept 2019
  2. 2.
    Winter M (1993) Rhodium. In: Webelements. https://www.webelements.com/rhodium/. Accessed 6 Sept 2019
  3. 3.
    Winter M (1993) Palladium. In: Webelements. https://www.webelements.com/palladium/. Accessed 6 Sept 2019
  4. 4.
    Winter M (1993) Silver. In: Webelements. https://www.webelements.com/silver/. Accessed 6 Sept 2019
  5. 5.
    Patra A et al (2017) Properties of real metallic surfaces: effects of density functional semilocality and van der Waals nonlocality. Proc Nat Acad Sci 114(44):E9188–E9196.  https://doi.org/10.1073/pnas.1713320114
  6. 6.
    Tougaard S (2018) Improved XPS analysis by visual inspection of the survey spectrum. Surf Interface Anal 50:657–666CrossRefGoogle Scholar
  7. 7.
    Woodruff D (2002) Low energy electron diffraction. In Buschow KH (ed) Encyclopedia of materials: science and technology, 2nd edn., 2002. Reference module in chemistry, molecular sciences and chemical engineering 2002. Elsevier, New York, pp 1–4. https://dx.doi.org/10.1016/b978-0-12-803581-8.03400-7
  8. 8.
    Kirz J, Jacobsen C (2009) The history and future of X-ray microscopy. J Phys Conf Ser 186(1):012001.  https://doi.org/10.1088/1742-6596/186/1/012001CrossRefGoogle Scholar
  9. 9.
    Kryachko E, Ludeña E (2014) Density functional theory: foundations reviewed. Phys Rep 544(2):123–239.  https://doi.org/10.1016/j.physrep.2014.06.002CrossRefGoogle Scholar
  10. 10.
    Lutton K, Scully J. Kinetics of oxide growth of passive films on transition metals. In: Wandelt K (ed) Encyclopedia of interfacial chemistry 2018 reference module in chemistry, Molecular sciences and chemical engineering 2017. Elsevier, New York, pp 284–290. https://dx.doi.org/10.1016/b978-0-12-409547-2.13576-0
  11. 11.
    Fromhold AT (1976) Theory of metal oxidation. North Holland Publishing Company, Amsterdam, Signatur an der Bibliothek der Uni Graz: I 466591Google Scholar
  12. 12.
    Xu Z, Rosso K, Bruemmer S (2012) Metal oxidation kinetics and the transition from thin to thick films. Phys Chem Chem Phys 14(42):14534–14539.  https://doi.org/10.1039/c2cp42760eCrossRefGoogle Scholar
  13. 13.
    Zheng G, Altman E (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270.  https://doi.org/10.1016/s0039-6028(02)01104-4CrossRefGoogle Scholar
  14. 14.
    Bondzie V, Kleban P, Dwyer D (2000) Kinetics of PdO formation and CO reduction on Pd(110). Surf Sci 465(3):266–276.  https://doi.org/10.1016/s0039-6028(00)00709-3CrossRefGoogle Scholar
  15. 15.
    Zemlyanov D, Klötzer B, Gabasch H, Smeltz A, Ribeiro F, Zafeiratos S, Teschner D, Schnörch P, Vass E, Hävecker M, Knop-Gericke A, Schlögl R (2013) Kinetics of palladium oxidation in the mbar pressure range: ambient pressure XPS study. Top Catal 56(11):885–895.  https://doi.org/10.1007/s11244-013-0052-zCrossRefGoogle Scholar
  16. 16.
    de Rooij A (1989) The oxidation of silver by atomic oxygen. ESA J 13:363–382Google Scholar
  17. 17.
    Ribera R, Kruijs R, Yakshin A, Bijkerk F (2015) Determination of oxygen diffusion kinetics during thin film ruthenium oxidation. J Appl Phys 118(5):055303.  https://doi.org/10.1063/1.4928295CrossRefGoogle Scholar
  18. 18.
    Carol L, Mann G (1990) High-temperature oxidation of rhodium. Oxid Met 34(1–2)Google Scholar
  19. 19.
    Han J (2004) Kinetic and morphological studies of palladium oxidation in O2-CH4 mixtures. Dissertation, Worcester Polytechnic InstituteGoogle Scholar
  20. 20.
    Zheng G, Altman E (2000) The oxidation of Pd(111). Surf Sci 462(1–3):151–168.  https://doi.org/10.1016/s0039-6028(00)00599-9CrossRefGoogle Scholar
  21. 21.
    Bukas V, Reuter K (2017) A comparative study of atomic oxygen adsorption at Pd surfaces from density functional theory. Surf Sci 658(Science 321 5890 2008):38–45. https://dx.doi.org/10.1016/j.susc.2017.01.001
  22. 22.
    Brena B, Comelli G, Ursella L, Paolucci G (1997) Oxygen on Pd(110): substrate reconstruction and adsorbate geometry by tensor LEED. Surf Sci 375(2–3):150–160.  https://doi.org/10.1016/s0039-6028(96)01295-2CrossRefGoogle Scholar
  23. 23.
    Todorova M (2004) Oxidation of palladium surfaces. Dissertation, Technical University BerlinGoogle Scholar
  24. 24.
    Westerström R, Weststrate C, Resta A, Mikkelsen A, Schnadt J, Andersen J, Lundgren E, Schmid M, Seriani N, Harl J, Mittendorfer F, Kresse G (2008) Stressing Pd atoms: initial oxidation of the Pd(110) surface. Surf Sci 602(14):2440–2447.  https://doi.org/10.1016/j.susc.2008.05.033CrossRefGoogle Scholar
  25. 25.
    Lundgren E, Stierle A, Todorova M, Gustafson J, Mikkelsen A, Rogal J, Reuter K, Andersen J, Dosch H, Scheffler M (2003) Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures. Phys Rev Lett 92(4):046101-1-4. https://dx.doi.org/10.1103/physrevlett.92.046101
  26. 26.
    Nagarajan S, Gopinath CS (2010) Diffusion of chemisorbed oxygen into Pd sub-surfaces and its influence in oxidation catalysis. J Indian Inst Sci 90(2):245–260Google Scholar
  27. 27.
    Todorova M, Reuter K, Scheffler M (2005) Density-functional theory study of the initial oxygen incorporation in Pd(111). Phys Rev B 71(19):195403.  https://doi.org/10.1103/physrevb.71.195403CrossRefGoogle Scholar
  28. 28.
    Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Gustafson J, Borg M, Rogala J, Reuter K, Andersen J, Scheffler MP (2003) The Pd(100)–(root 5 x root 5)R27degrees-O surface oxide revisited. Surf Sci 541:101–112CrossRefGoogle Scholar
  29. 29.
    Gegner J, Hörz G, Kirchheim R (2009) Diffusivity and solubility of oxygen in solid palladium. J Mater Sci 44(9):2198–2205.  https://doi.org/10.1007/s10853-008-2923-4CrossRefGoogle Scholar
  30. 30.
    Böttcher A, Niehus H (1999) Formation of subsurface oxygen at Ru(0001). J Chem Phys 110(6):3186–3195.  https://doi.org/10.1063/1.477839CrossRefGoogle Scholar
  31. 31.
    Baskaran A, Smereka P (2012) Mechanisms of Stranski-Krastanov growth. J Appl Phys 111(4):044321.  https://doi.org/10.1063/1.3679068CrossRefGoogle Scholar
  32. 32.
    Michaelides A, Bocquet M, Sautet P, Alavi A, King D (2003) Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{111}. Chem Phys Lett 367(3–4):344–350.  https://doi.org/10.1016/s0009-2614(02)01699-8CrossRefGoogle Scholar
  33. 33.
    Stampfl C (2005) Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal Today 105(1):17–35.  https://doi.org/10.1016/j.cattod.2005.04.015CrossRefGoogle Scholar
  34. 34.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Köhler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quirós C, Andersen J (2003) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102.  https://doi.org/10.1103/physrevlett.92.126102)CrossRefGoogle Scholar
  35. 35.
    Reuter K, Stampfl C, Ganduglia-Pirovano M, Scheffler M (2002) Atomistic description of oxide formation on metal surfaces: the example of ruthenium. Chem Phys Lett 352(5–6):311–317.  https://doi.org/10.1016/s0009-2614(01)01472-5CrossRefGoogle Scholar
  36. 36.
    Ribera R, Kruijs R, Kokke S, Zoethout E, Yakshin A, Bijkerk F (2014) Surface and sub-surface thermal oxidation of thin ruthenium films. Appl Phys Lett 105(13):131601.  https://doi.org/10.1063/1.4896993CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations