Printed Flexible Sensors Functionalized with TiO2 Nanowires for Room Temperature CO2 Gas Sensing

  • Lingyue Zhang
  • Yongchao Yu
  • Zachary James
  • Yaxuan Liu
  • Curtis Hill
  • Anming HuEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The monitoring of CO2 concentration is important for the environment and health. The present work reports a printed silver electrodes CO2 sensor with TiO2 nanowires coated on the surface. The silver electrode sensor was printed with a Voltera PCB printer. TiO2 nanowires were attached to the electrodes by an electro-deposition method. Variations in resistance of the sensing element by the exposure of CO2 gas were successfully observed at room temperature without additional heat. The printed CO2 sensor shows responses from 78 ppm to more than 1055 ppm with a response time of 92 s and a recovery time of 25 s. The selectivity experiment displays that the printed sensor does not respond to methane, CO, NH3, H2, or H2S at 1000 ppm or higher concentration, but it is slightly sensitive to humidity. The response is 2% for 1000 ppm CO2, while the response is 0.7% when the relative humidity changes from 48 to 99%. The present results display a facile method to develop highly sensitive and selective CO2 sensors operating at room temperature.


Printed flexible sensors TiO2 nanowires CO2 gas sensing 



This research work is supported by the funding from NASA-MSFC-UTK CAN Project (80MSFC19M003).


  1. 1.
    Nieuwenhuizen M, Nederlof A (1990) A SAW gas sensor for carbon dioxide and water. Preliminary experiments. Sens Actuators B Chem 2(2):97–101Google Scholar
  2. 2.
    Joly L et al (2007) Development of a compact CO2 sensor open to the atmosphere and based on near-infrared laser technology at 2.68 μm. Appl Phys B 86(4):743–748Google Scholar
  3. 3.
    Ong K, Grimes C (2001) A carbon nanotube-based sensor for CO2 monitoring. Sensors 1(6):193–205CrossRefGoogle Scholar
  4. 4.
    Marsal A, Cornet A, Morante J (2003) Study of the CO and humidity interference in La doped tin oxide CO2 gas sensor. Sens Actuators B Chem 94(3):324–329CrossRefGoogle Scholar
  5. 5.
    Yadav B et al (2016) Fabrication and characterization of nanostructured indium tin oxide film and its application as humidity and gas sensors. J Mater Sci Mater Electron 27(5):4172–4179CrossRefGoogle Scholar
  6. 6.
    Huber J et al (2016) Photoacoustic CO2-sensor for automotive applications. Procedia Eng 168:3–6CrossRefGoogle Scholar
  7. 7.
    Sonker RK, Yadav B (2016) Low temperature study of nanostructured Fe2O3 thin films as NO2 sensor. Mater Today Proc 3(6):2315–2320CrossRefGoogle Scholar
  8. 8.
    Jeong Y-J, Balamurugan C, Lee D-W (2016) Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens Actuators B Chem 229:288–296CrossRefGoogle Scholar
  9. 9.
    Yue J, Jiang X, Yu A (2013) Adsorption of the OH group on SnO2 (110) oxygen bridges: a molecular dynamics and density functional theory study. J Phys Chem C 117(19):9962–9969CrossRefGoogle Scholar
  10. 10.
    Hunge Y et al (2018) A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens Actuators B Chem 274:1–9CrossRefGoogle Scholar
  11. 11.
    Habib M et al (2015) Preparation and characterization of ZnO nanowires and their applications in CO2 gas sensors. Mater Today Proc 2(10):5714–5719CrossRefGoogle Scholar
  12. 12.
    Yang Q et al (2017) Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B Chem 241:806–813CrossRefGoogle Scholar
  13. 13.
    Dhawale D, Lokhande C (2011) Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance. J Alloy Compd 509(41):10092–10097CrossRefGoogle Scholar
  14. 14.
    Sumangala T et al (2018) Effect of synthesis method and morphology on the enhanced CO2 sensing properties of magnesium ferrite MgFe2O4. Ceram Int 44(15):18578–18584CrossRefGoogle Scholar
  15. 15.
    Kida T et al (2008) Planar NASICON-Based CO2 sensor using BiCuVOx/Perovskite–type oxide as a solid-reference electrode. J Electrochem Soc 155(5):J117–J121CrossRefGoogle Scholar
  16. 16.
    Shimizu Y, Yamashita N (2000) Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode. Sens Actuators B Chem 64(1–3):102–106CrossRefGoogle Scholar
  17. 17.
    Struzik M et al (2018) A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater 30(44):1804098CrossRefGoogle Scholar
  18. 18.
    Krishnakumar T et al (2011) CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology 22(32):325501CrossRefGoogle Scholar
  19. 19.
    Xiang C et al (2014) A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram Int 40(10):16343–16348CrossRefGoogle Scholar
  20. 20.
    Sonker RK, Sabhajeet S, Yadav B (2016) TiO2–PANI nanocomposite thin film prepared by spin coating technique working as room temperature CO2 gas sensing. J Mater Sci Mater Electron 27(11):11726–11732CrossRefGoogle Scholar
  21. 21.
    Hu A et al (2011) Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. J Hazard Mater 189(1–2):278–285CrossRefGoogle Scholar
  22. 22.
    Hu A et al (2013) Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. J Photochem Photobiol A 256:7–15CrossRefGoogle Scholar
  23. 23.
    Wu J et al. Electrophoretic deposition and thermo-chemical properties of Al/Fe2O3 nanothermite thick filmsGoogle Scholar
  24. 24.
    Sonker RK et al (2015) Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater Lett 152:189–191CrossRefGoogle Scholar
  25. 25.
    Kim DH et al (2000) CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide. Sens Actuators B Chem 62(1):61–66CrossRefGoogle Scholar
  26. 26.
    Herrán J, Mandayo GG, Castano E (2008) Solid state gas sensor for fast carbon dioxide detection. Sens Actuators B Chem 129(2):705–709CrossRefGoogle Scholar
  27. 27.
    Mandal B et al (2018) π-Conjugated amine–ZnO nanohybrids for the selective detection of CO2 gas at room temperature. ACS Appl Nano Mater 1(12):6912–6921CrossRefGoogle Scholar
  28. 28.
    Fan K et al (2013) CO2 gas sensors based on La1−xSrxFeO3 nanocrystalline powders. Sens Actuators B Chem 177:265–269CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Lingyue Zhang
    • 1
  • Yongchao Yu
    • 1
  • Zachary James
    • 1
  • Yaxuan Liu
    • 2
  • Curtis Hill
    • 3
  • Anming Hu
    • 1
    Email author
  1. 1.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Jiangnan UniversityBinhu Qu, Wuxi ShiChina
  3. 3.Marshall Space Flight CenterNational Aeronautics and Space AdministrationHuntsvilleUSA

Personalised recommendations