Advertisement

Trends and Challenges for Electrowinning of Aluminium and Magnesium from Molten Salt Electrolytes

  • Geir Martin HaarbergEmail author
Conference paper
  • 706 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Modern aluminium producing cells are operating at ~955–965 °C. The current efficiency with respect to aluminium can be as high as 96% and the corresponding energy consumption may be ~13 kWh/kg Al and higher in cells running at ~300 kA or higher. The current density is ~0.9 A/cm2. Developing inert anodes for oxygen evolution and measures to eliminate PFC emissions are important research topics. The role of impurities is also an important issue. Today, magnesium is mainly produced by the Pidgeon process, which involves the reduction of MgO by silicon in the form of ferrosilicon. The thermal process is presently more economic but electrowinning in molten chlorides with MgCl2 feedstock may be more sustainable and may make a comeback. However, electrolysis is still important for producing magnesium in the Kroll process for titanium production. The presence of moisture will affect the collection of produced Mg droplets and the consumption of graphite anodes.

Keywords

Aluminium Magnesium Electrowinning Electrolysis 

References

  1. 1.
  2. 2.
    Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Heroult process. Aluminium-Verlag, DüsseldorfGoogle Scholar
  3. 3.
    Solheim A, Sterten Å (1997) Activity data for the system NaF-AlF3. In: Proceedings of the ninth international symposium on light metals production, Trondheim, Norway, p 225Google Scholar
  4. 4.
    Skybakmoen E, Solheim A, Sterten Å (1997) Alumina solubility in molten salt systems of interest for aluminum electrolysis and related phase diagram data. Metall Mater Trans B 28B:81–86CrossRefGoogle Scholar
  5. 5.
    Sterten Å (1980) Structural entities in NaF-AlF3 melts containing alumina. Electrochim Acta 25:1673CrossRefGoogle Scholar
  6. 6.
    Thonstad J, Rolseth S (1978) On the cathodic overvoltage on aluminium in cryolite-alumina melts—I. Electrochim Acta 23:223–241CrossRefGoogle Scholar
  7. 7.
    Jarek S, Thonstad J (1987) Light metals 1987, pp 399–407Google Scholar
  8. 8.
    Thonstad J (1964) On the anode gas reactions in aluminum electrolysis, II. J Electrochem Soc 111:959CrossRefGoogle Scholar
  9. 9.
    Bredig MA (1964) Mixtures of metals with molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New YorkGoogle Scholar
  10. 10.
    Ødegård R, Sterten Å, Thonstad J (1987) Light metals 1987, p 389Google Scholar
  11. 11.
    Wang X, Peterson RD, Richards NE (1991) Light metals 1991, p 323Google Scholar
  12. 12.
    Rolseth S, Thonstad J (1981) On the mechanism of the reoxidation reaction in aluminum electrolysis. In: Light metals 1981, pp 289–301Google Scholar
  13. 13.
    Sterten Å (1988) Current efficiency in aluminium reduction cells. J Appl Electrochem 18:473CrossRefGoogle Scholar
  14. 14.
    Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781Google Scholar
  15. 15.
    Sterten Å, Solli PA (1995) Cathodic process and cyclic redox reactions in aluminium electrolysis cells. J Appl Electrochem 25:809Google Scholar
  16. 16.
    Haarberg GM, Armoo JP, Gudbrandsen H, Skybakmoen E, Solheim A, Jentoftsen TE (2011) Current efficiency for aluminium deposition from molten cryolite-alumina electrolytes in a laboratory cell. In: Light metals 2011, pp 461–463Google Scholar
  17. 17.
    Li J, Xu Y, Zhang H, Lai Y (2010) An inhomogeneous three-phase model for the flow in aluminium reduction cells. Int J Multiphase Flow.  https://doi.org/10.1016/j.ijmultiphaseflow.2010.08009
  18. 18.
    Johansen HG, Thonstad J, Sterten Å (1977) Light metals 1977, pp 253–261Google Scholar
  19. 19.
    Deininger L, Gerlach J (1979) Measurements of the current efficiency in aluminium oxide electrolytic reduction on the laboratory scale. J Metall 33:131Google Scholar
  20. 20.
    Sterten Å, Solli PA, Skybakmoen E (1998) Influence of electrolyte impurities on current efficiency in aluminium electrolysis cells. J Appl Electrochem 28:781CrossRefGoogle Scholar
  21. 21.
    Haugland E, Haarberg GM, Thisted E, Thonstad J (2001) The behaviour of phosphorus impurities in aluminium electrolysis cells. In: Light metals 2001, p 549Google Scholar
  22. 22.
    Haarberg GM (2017) Electrochemical behaviour of dissolved titanium oxides during aluminium deposition from molten fluoride electrolytes. Mater Trans 58(3):406–409CrossRefGoogle Scholar
  23. 23.
    Haupin WE (1995) Principles of aluminum electrolysis. In: Light metals 1995, pp 195–203Google Scholar
  24. 24.
    Marks J, Byliss C (2012) GHG measurement and inventory for aluminum production. In: Light metals 2012, pp 803–808Google Scholar
  25. 25.
    Åsheim H, Aarhaug TA, Sandnes E, Kjos OS, Solheim A, Kolås S, Haarberg GM (2016) Anode effect initiation during aluminium electrolysis in a two-compartment laboratory cell. In: Light metals 2016, pp 551–558Google Scholar
  26. 26.
    Strelets KhL (1977) Electrolytic production of magnesium. Keterpress Enterprises, Jerusalem, IsraelGoogle Scholar
  27. 27.
    Kipouros GJ, Sadoway DR (1987) Advances in molten salt chemistry, vol 6, Mamantov G (ed). Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Høy-Petersen N (1990) From past to future. In: Light metal age, vol 48, pp 14–16Google Scholar
  29. 29.
    Haarberg GM, Tunold R, Osen KS (2001) Voltammetric characterization of dissolved oxygen and hydrogen containing species in chloride melts. In: Rosenkilde C (ed) Jondal 2000, Proceedings, International symposium, vol 147Google Scholar
  30. 30.
    Boghosian S, Godø A, Mediaas H, Ravlo W, Østvold T (1991) Oxide complexes in alkali-alkaline-earth chloride melts. Acta Chem Scand 45:145Google Scholar
  31. 31.
    Vilnyanski YE, Savinkova EI (1957) J Appl Chem USSR 28:827Google Scholar
  32. 32.
    van Norman JD, Egan JJ (1963) Magnesium-magnesium chloride system-a chronopotentiometric study. J Phys Chem 67:2460CrossRefGoogle Scholar
  33. 33.
    Martinez AM, Børresen B, Haarberg GM, Castrillejo Y, Tunold R (2004) Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 Melts. J Electrochem Soc 151:C508–C513CrossRefGoogle Scholar
  34. 34.
    Mohamedi M, Børresen B, Haarberg GM, Tunold R (1999) Anodic behaviour of carbon electrodes in CaO-CaCl2 melts at 1123 K. J Electrochem Soc 146:1472CrossRefGoogle Scholar
  35. 35.
    Wallevik O, Amundsen K, Faucher A, Mellerud T (2000) Magnesium electrolysis—a monopolar viewpoint. In: Kaplan HI, Hryn J, Clow B (eds) Magnesium technology 2000. The Minerals, Metals & Materials Society, Warrendale, pp 13–16Google Scholar
  36. 36.
    Ishizuka H (1985) Method for electrolytically obtaining magnesium metal. US patent 4,495,037Google Scholar
  37. 37.
    Sivilotti OG (1985) Metal production by electrolysis of a molten electrolyte. US patent 4,514,269Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations