Advertisement

Mechanical Properties of Fibers Coated by Atomic Layer Deposition for Polymer-Matrix Composites with Enhanced Thermal and Ultraviolet Resistance

  • Robin E. Rodríguez
  • Tae H. Cho
  • M. Ravandi
  • William S. LePage
  • Mihaela Banu
  • M. D. Thouless
  • Neil P. DasguptaEmail author
Conference paper
  • 48 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Interfacial engineering of fiber-reinforced composites is critical to control material properties, such as mechanical strength and toughness. In this study, we utilize atomic layer deposition (ALD) as a method to conformally coat structural fiber surfaces and study the impact of these interlayers on their mechanical adhesion to polymer-matrix materials. ALD of Al2O3, ZnO, and TiO2 were applied to Kevlar® and carbon fibers, and microbond testing was performed using droplets of PMMA and Epoxy. It was observed that the mechanical force required for debonding of the polymer droplet from the coated fiber surfaces depended on the composition and thickness of the coating. Post-mortem scanning electron microscopy and energy dispersive X-ray spectroscopy for elemental analysis indicated that the ALD films remained adhered to the droplet, suggesting that the ALD/fiber interface limited the mechanical properties of the interphase region. Additionally, ALD of ZnO was demonstrated to prevent fiber degradation from ultraviolet (UV) and high-temperature thermal treatments, demonstrating a pathway towards multi-functional composite interphase engineering by ALD.

Keywords

Atomic layer deposition Composite Fiber Polymer Sizing Coating Interface 

Notes

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) under Grant FA9550-16-1-0313. This material is based upon work supported by the National Science Foundation under Grant No. 1751590. The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF Grant #DMR-9871177 and technical support from the Michigan Center for Materials Characterization.

References

  1. 1.
    Parmigiani JP, Thouless MD (2006) The roles of toughness and cohesive strength on crack deflection at interfaces. J Mech Phys Solids 54(2):266–287CrossRefGoogle Scholar
  2. 2.
    Martin E, Leguillon D, Lacroix C (2002) An energy criterion for the initiation of interface failure ahead of a matrix crack in brittle matrix composites. Compos Interfaces 9(2):143–156CrossRefGoogle Scholar
  3. 3.
    Jones FR (2010) A review of interphase formation and design in fibre-reinforced composites. J Adhes Sci Technol 24(1):171–202CrossRefGoogle Scholar
  4. 4.
    Dai Z, Shi F, Zhang B, Li M, Zhang Z (2011) Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl Surf Sci 257(15):6980–6985CrossRefGoogle Scholar
  5. 5.
    Berg J, Jones FR (1998) The role of sizing resins, coupling agents and their blends on the formation of the interphase in glass fibre composites. Compos Part A Appl Sci Manuf 29(9–10):1261–1272CrossRefGoogle Scholar
  6. 6.
    Yuan H, Zhang S, Lu C, He S, An F (2013) Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing. Appl Surf Sci 279:279–284CrossRefGoogle Scholar
  7. 7.
    Gnädinger F, Middendorf P, Fox B (2016) Interfacial shear strength studies of experimental carbon fibres, novel thermosetting polyurethane and epoxy matrices and bespoke sizing agents. Compos Sci Technol 133:104–110CrossRefGoogle Scholar
  8. 8.
    Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, Yu L (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552CrossRefGoogle Scholar
  9. 9.
    Tamrakar S, An Q, Thostenson ET, Rider AN, Haque BZ, Gillespie JW (2016) Tailoring interfacial properties by controlling carbon nanotube coating thickness on glass fibers using electrophoretic deposition. ACS Appl Mater Interfaces 8(2):1501–1510CrossRefGoogle Scholar
  10. 10.
    Rider AN, An Q, Brack N, Thostenson ET (2016) A comparison of mechanical and electrical properties in hierarchical composites prepared using electrophoretic or chemical vapor deposition of carbon nanotubes. MRS Adv 1(12):785–790CrossRefGoogle Scholar
  11. 11.
    Qian H, Bismarck A, Greenhalgh ES, Kalinka G, Shaffer MSP (2008) Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem Mater 20(5):1862–1869CrossRefGoogle Scholar
  12. 12.
    Mogilevsky P, Boakye EE, Key TS, Parthasarathy TA, Hay RS, Cinibulk MK (2019) In situ Y2Si2O7 coatings on SiC fibers: thermodynamic analysis and processing. J Am Ceram Soc 102(1):167–177CrossRefGoogle Scholar
  13. 13.
    Dasgupta NP, Lee HBR, Bent SF, Weiss PS (2016) Recent advances in atomic layer deposition. Chem Mater 28(7):1943–1947CrossRefGoogle Scholar
  14. 14.
    Militzer C, Dill P, Goedel WA (2017) Atomic layer deposition onto carbon fiber fabrics. J Am Ceram Soc 100(12):5409–5420CrossRefGoogle Scholar
  15. 15.
    Daubert JS, Mundy JZ, Parsons GN (2016) Kevlar-based supercapacitor fibers with conformal pseudocapacitive metal oxide and metal formed by ALD. Adv Mater Interfaces 3(21):1600355CrossRefGoogle Scholar
  16. 16.
    Gregorczyk KE, Pickup DF, Sanz MG, Irakulis IA, Rogero C, Knez M (2015) Tuning the tensile strength of cellulose through vapor-phase metalation. Chem Mater 27(1):181–188CrossRefGoogle Scholar
  17. 17.
    Hyde GK, Scarel G, Spagnola JC, Peng Q, Lee K, Gong B, Roberts KG, Roth KM, Hanson CA, Devine CK, Stewart SM, Hojo D, Na JS, Jur JS, Parsons GN (2010) Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26(4):2550–2558CrossRefGoogle Scholar
  18. 18.
    Jur JS, Spagnola JC, Lee K, Gong B, Peng Q, Parsons GN (2010) Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26(11):8239–8244CrossRefGoogle Scholar
  19. 19.
    Liang X, Yang Y, Lou J, Sheldon BW (2017) The impact of core-shell nanotube structures on fracture in ceramic nanocomposites. Acta Mater 122:82–91CrossRefGoogle Scholar
  20. 20.
    Vogel S, Dransfeld C, Fiedler B, Gobrecht J, (2014) Protective effect of thin alumina layer on carbon fibre to preserve tensile strength during CNT growth by CVD. In: 16th European conference on composite. Materials. ECCM 2014, Seville, Spain, 22–26 June 2014Google Scholar
  21. 21.
    Yamamoto N, Guzman de Villoria R, Wardle BL (2012) Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos Sci Technol 72(16):2009–2015CrossRefGoogle Scholar
  22. 22.
    Lin Y, Shaffer JW, Sodano HA (2010) Electrolytic deposition of PZT on carbon fibers for fabricating multifunctional composites. Smart Mater Struct 19(12):124004CrossRefGoogle Scholar
  23. 23.
    Lin Y, Sodano HA (2009) Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites. Adv Funct Mater 19(4):592–598CrossRefGoogle Scholar
  24. 24.
    Rodríguez RE, Agarwal SP, An S, Kazyak E, Das D, Shang W, Skye R, Deng T, Dasgupta NP (2018) Biotemplated morpho butterfly wings for tunable structurally colored photocatalysts. ACS Appl Mater Interfaces 10(5):4614–4621CrossRefGoogle Scholar
  25. 25.
    Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys 113(2):021301CrossRefGoogle Scholar
  26. 26.
    Zeng L, Liu X, Chen X, Soutis C (2018) Surface modification of aramid fibres with graphene oxide for interface improvement in composites. Appl Compos Mater 25(4):843–852CrossRefGoogle Scholar
  27. 27.
    Azpitarte I, Zuzuarregui A, Ablat H, Ruiz-Rubio L, López-Ortega A, Elliott SD, Knez M (2017) Suppressing the thermal and ultraviolet sensitivity of kevlar by infiltration and hybridization with ZnO. Chem Mater 29(23):10068–10074CrossRefGoogle Scholar
  28. 28.
    Dasgupta NP, Mack JF, Langston MC, Bousetta A, Prinz FB (2010) Design of an atomic layer deposition reactor for hydrogen sulfide compatibility. Rev Sci Instrum 81(4):044102CrossRefGoogle Scholar
  29. 29.
    Sockalingam S, Nilakantan G (2012) Fiber-matrix interface characterization through the microbond test: a review. Int J Aeronaut Sp Sci 13(3):282–295CrossRefGoogle Scholar
  30. 30.
    Nishikawa M, Okabe T, Hemmi K, Takeda N (2008) Micromechanical modeling of the microbond test to quantify the interfacial properties of fiber-reinforced composites. Int J Solids Struct 45(14–15):4098–4113CrossRefGoogle Scholar
  31. 31.
    Miller B, Gaur U, Hirt DE (1991) Measurement and mechanical aspects of the microbond pull-out technique for obtaining fiber/resin interfacial shear strength. Compos Sci Technol 42(1–3):207–219CrossRefGoogle Scholar
  32. 32.
    Meretz S, Nowak H, Hampe A, Hinrichsen G, Schumacher K, Sernow R (1991) Investigations of interfacial shear strength between reinforcing fibres and polymer matrix with the single fibre pull-out test. In: Second international conference of interfacial phenom. Composition materials, Leuven, Belgium, 17–19 Sept 1991, pp 73–76Google Scholar
  33. 33.
    Wu K, Xu Y, Cheng X (2018) Simulation and analysis of single fiber pull-out tests through ANSYS and VC++. Int J Adv Manuf Technol 96(5–8):1591–1599CrossRefGoogle Scholar
  34. 34.
    Feih S, Schwartz P (1997) FEM analysis and comparison of single fiber pull-out tests. Adv Compos Lett 6(4):99–102CrossRefGoogle Scholar
  35. 35.
    Kang SK, Lee DB, Choi NS (2009) Fiber/epoxy interfacial shear strength measured by the microdroplet test. Compos Sci Technol 69(2):245–251CrossRefGoogle Scholar
  36. 36.
    Gu X, Young RJ (1997) Deformation micromechanics in model carbon fiber reinforced composites part II: the microbond test. Text Res J 67(2):93–100CrossRefGoogle Scholar
  37. 37.
    Day RJ, Cauich Rodrigez JV (1998) Investigation of the micromechanics of the microbond test. Compos Sci Technol 58(6):907–914CrossRefGoogle Scholar
  38. 38.
    Zhandarov S, Mäder E (2013) Analysis of a pull-out test with real specimen geometry. Part I: matrix droplet in the shape of a spherical segment. J Adhes Sci Technol 27(4):430–465CrossRefGoogle Scholar
  39. 39.
    Zhao Q, Qian CC, Harper LT, Warrior NA (2018) Finite element study of the microdroplet test for interfacial shear strength: effects of geometric parameters for a carbon fibre/epoxy system. J Compos Mater 52(16):2163–2177CrossRefGoogle Scholar
  40. 40.
    Zhi C, Long H, Miao M (2017) Influence of microbond test parameters on interfacial shear strength of fiber reinforced polymer-matrix composites. Compos Part A Appl Sci Manuf 100:55–63CrossRefGoogle Scholar
  41. 41.
    Chen Y, Ginga N, LePage WS, Kazyak E, Gayle A, Wang J, Rodríguez RE, Thouless MD, Dasgupta NP (Submitted) Enhanced interfacial toughness of thermoplastic-epoxy interfaces using ald surface treatmentsGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Robin E. Rodríguez
    • 1
  • Tae H. Cho
    • 1
  • M. Ravandi
    • 1
  • William S. LePage
    • 1
  • Mihaela Banu
    • 1
  • M. D. Thouless
    • 1
    • 2
  • Neil P. Dasgupta
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations