Advertisement

Computational Polyetheylene-Ceramic Composite Plate Design and Optimization

  • Trenin K. BaylessEmail author
  • Jerome Downey
  • Peter Lucon
  • Scott Coguill
Conference paper
  • 624 Downloads
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

A computational study on the feasibility of increasing the weight-to-protection ratio of polyethylene armored plates by adding local ceramic inserts into the polymer matrix. A computational study was conducted using ANSYS/AUTODYNE software to observe the behavior of the materials under high-velocity impact conditions. Results indicate that efficacy is highly variable based on the geometry and density of the ceramic inserts. Additional studies indicate that the presence of high-density inserts create localizations of high stress and can increase the impact resistance of the by plate by reducing the penetration depth of an impactor by up to 50%.

Keywords

Tungsten carbide Computational analysis Ballistic ANSYS Armor Polyethylene 

Notes

Acknowledgements

Research was sponsored by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0020. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Combat Capabilities Development Command Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

The authors gratefully acknowledge the Montana University System Collaborative Materials Science Ph.D. Program.

References

  1. 1.
    United States, Congress, Justice Programs (2008) Ballistic resistance of body armor NIJ Standard-0101.06. Office of Law Enforcement Standards of the National Institute of Standards and TechnologyGoogle Scholar
  2. 2.
    Baniasadi M et al (2015) High-performance coils and yarns of polymeric piezoelectric nanofibers. ACS Appl Mater Interfaces 7(9):5358–5366.  https://doi.org/10.1021/am508812aCrossRefGoogle Scholar
  3. 3.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605.  https://doi.org/10.1038/363603a0CrossRefGoogle Scholar
  4. 4.
    Kurtz S (1999) Advances in the processing, sterilization, and cross-linking of ultra-High molecular weight polyethylene for total joint arthroplasty. Biomaterials 20(18):1659–1688.  https://doi.org/10.1016/s0142-9612(99)00053-8CrossRefGoogle Scholar
  5. 5.
    Sobieraj MC, Rimnac CM (2009) Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater 2(5):433–443.  https://doi.org/10.1016/j.jmbbm.2008.12.006CrossRefGoogle Scholar
  6. 6.
    Armor UP, Dba LP (n.d.) Retrieved from http://bulletproofme.com/RP-Polyethylene.html
  7. 7.
    Jain V et al (2003) Effect of rubber encapsulation on the comparative mechanical behaviour of ceramic honeycomb and foam. Mater Sci Eng A 347(1–2):109–122.  https://doi.org/10.1016/s0921-5093(02)00587-7CrossRefGoogle Scholar
  8. 8.
    Colombo P et al (2012) Ceramic-polymer composites for ballistic protection. In: Ceramic transactions series ceramic armor and armor systems II, pp 79–89.  https://doi.org/10.1002/9781118408100.ch7
  9. 9.
    Colombo P et al (2006) Ceramic–polymer composites for ballistic protection. Adv Appl Ceram 105(2):78–83.  https://doi.org/10.1179/174367606x84440CrossRefGoogle Scholar
  10. 10.
    Colombo P, Medvedovski E, Zordan F (2012) Ceramic-polymer composites for ballistic protection. In: Ceramic armor and armor systems II, pp 79–89.  https://doi.org/10.1002/9781118408100.ch7
  11. 11.
    Medvedovski E (2013) Lightweight ceramic composite armour system. Adv Appl Ceram 105(5):241–245.  https://doi.org/10.1179/174367606x113537CrossRefGoogle Scholar
  12. 12.
    Navarro C et al (1993) Some observations on the normal impact on ceramic faced armours backed by composite plates. Int J Impact Eng 13(1):145–156.  https://doi.org/10.1016/0734-743x(93)90113-lCrossRefGoogle Scholar
  13. 13.
    Guo X et al (2016) Simulation of ballistic performance of a two-layered structure of nanostructured metal and ceramic. Compos Struct 157:163–173.  https://doi.org/10.1016/j.compstruct.2016.08.025CrossRefGoogle Scholar
  14. 14.
    Marx J et al (2019) Ballistic performance of composite metal foam against large caliber threats. In: Composite structures, p 111032.  https://doi.org/10.1016/j.compstruct.2019.111032
  15. 15.
    Colombo P et al (2006) Ceramic-polymer composites for ballistic protection. Adv Appl Ceram 105(2):78–83.  https://doi.org/10.1179/174367606x84440CrossRefGoogle Scholar
  16. 16.
    ANSYS Inc (2019) Engineering simulation & 3D design software. ANSYS, 22 Mar 2019. www.ansys.com/
  17. 17.
    Sanborn B et al (2014) Tensile properties of Dyneema SK76 single fibers at multiple loading rates using a direct gripping method.  https://doi.org/10.21236/ada606636
  18. 18.
    Marx J et al (2019) Ballistic performance of composite metal foam against large caliber threats. Compos Struct 225:111032.  https://doi.org/10.1016/j.compstruct.2019.111032CrossRefGoogle Scholar
  19. 19.
    Fountzoulas CG et al (2019) In: Proceedings of the 23rd international symposium on ballistics, II, conference proceeding, 16 Apr 2009, pp 1039–1047Google Scholar
  20. 20.
    Holmquist TJ, Johnson GR, Gooch WA (2005) Modeling of the 14.5 mm BS41 projectile for ballistic impact computations. In: 2nd international conference on computational ballistics, Cordoba, Spain, 18–20 May 2005, pp 61–77Google Scholar
  21. 21.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  • Trenin K. Bayless
    • 1
    Email author
  • Jerome Downey
    • 1
  • Peter Lucon
    • 1
  • Scott Coguill
    • 1
  1. 1.Montana Technological UniversityButteUnited States

Personalised recommendations