Effective Copper Diffusion Coefficients in CuSO4–H2SO4 Electrowinning Electrolytes

  • Joseph Bauer
  • Michael MoatsEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Mass transport is an important factor in the deposit quality of copper electrowinning. Presently, there is limited diffusivity data available at commercially relevant concentrations between 25 and 40 ℃. Linear sweep voltammetry at a rotating disk electrode was used to measure effective diffusion coefficients of cupric ion for a wide range of copper concentrations (10–50 g/L), sulfuric acid concentrations (120–240 g/L), and temperatures (25–60 ℃). The results were well correlated by the equation: D, m2/s = 2.977 × 10−10–5.462 × 10−13 [Cu]—1.212 × 10−12 [H2SO4] + 1.688 × 10−11 × T, where [Cu] and [H2SO4] are in g/L, and T is  ℃. Addition of 20 mg/L Cl slightly increased effective diffusivity. Other common commercial organic smoothing agents were found to have no effect. The measured diffusivities were used to calculate the “maximum permissible current density” that can produce smooth dense cathodes as a function of copper concentration and temperature.


Copper Diffusion coefficient Electrowinning 


  1. 1.
    The World Copper Factbook (2018). International Copper Study Group. Accessed 15 Aug 2019
  2. 2.
    Al Shakarji R, He Y, Gregory S (2011) Statistical analysis of the effect of operating parameters on acid mist generation in copper electrowinning. Hydrometallurgy 106(1–2):113–118CrossRefGoogle Scholar
  3. 3.
    Hrussanova A, Mirkova L, Dobrev T, Vasilev S (2004) Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb–Co3O4, Pb–Ca–Sn, and Pb–Sb anodes for copper electrowinning: Part I. Hydrometallurgy 72(3–4):205–213CrossRefGoogle Scholar
  4. 4.
    Qin X, Gao F, Chen G (2010) Effects of the geometry and operating temperature on the stability of Ti/IrO2–SnO2–Sb2 O5 electrodes for O2 evolution. J Appl Electrochem 40(10):1797–1805CrossRefGoogle Scholar
  5. 5.
    Gang X, Qian Z (2014) The stability of copper extractants in acidic media. In: ALTA 2014 Nickel-Cobalt-Copper, Perth, Australia, 2014. ALTA Metallurgical Services, pp 281–291Google Scholar
  6. 6.
    Ibl N, Javet P, Stahel F (1972) Note on the electrodeposits obtained at the limiting current. Electrochim Acta 17(4):733–739CrossRefGoogle Scholar
  7. 7.
    Uceda D, O’Keefe T (1990) Electrochemical evaluation of copper deposition with gas sparging. J Appl Electrochem 20(2):327–334CrossRefGoogle Scholar
  8. 8.
    Ettel V, Tilak B, Gendron A (1974) Measurement of cathode mass transfer coefficients in electrowinning cells. J Electrochem Soc 12(7):867–872CrossRefGoogle Scholar
  9. 9.
    O’Keefe TJ, Cuzmar J, Chen S (1987) Calculation of mass transfer coefficients in metal deposition using electrochemical tracer techniques. J Electrochem Soc 134(3):547–551CrossRefGoogle Scholar
  10. 10.
    Ettel V, Gendron A, Tilak B (1975) Electrowinning copper at high current densities. Metall Mater Trans B 6(1):31–36CrossRefGoogle Scholar
  11. 11.
    Gendron A, Ettel V (1975) Hydrodynamic studies in natural and forced convection electrowinning cells. Can J Chem Eng 53(1):36–40CrossRefGoogle Scholar
  12. 12.
    Wang H, Chen S, O’Keefe T, Degrez M, Winand R (1989) Evaluation of mass transport in copper and zinc electrodeposition using tracer methods. J Appl Electrochem 19(2):174–182CrossRefGoogle Scholar
  13. 13.
    Degrez M, Winand R (1984) Determination des parametres cinetiques de l’electrodeposition du cuivre a haute densite de courant. Cas des solutions sulfuriques sans inhibiteur. Electrochimica Acta 29(3):365–372Google Scholar
  14. 14.
    Ilgar E, O’Keefe T (1997) Surface roughening of electrowon copper in the presence of chloride ions. In: Aqueous Electrotechnologies: Progress in Theory and Practice, pp 51–62Google Scholar
  15. 15.
    Nicol M, Zhang S, Kwang Loon Ang A, Fiorucci A (2013) Mass transport to cathodes in the electrowinning of copper. In: Paper presented at Copper, 2013, 8–10 April 2013Google Scholar
  16. 16.
    Hotloś J, Jaskula M (1988) Diffusion coefficients of silver ions in CuSO4 + H2SO4 solutions. J Electroanal Chem Interfacial Electrochem 249(1–2):123–132CrossRefGoogle Scholar
  17. 17.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  18. 18.
    Newman J (1966) Schmidt number correction for the rotating disk. J Phys Chem 70(4):1327–1328CrossRefGoogle Scholar
  19. 19.
    Hinatsu JT, Foulkes FR (1989) Diffusion coefficients for copper (II) in aqueous cupric sulfate-sulfuric acid solutions. J Electrochem Soc 136(1):125–132CrossRefGoogle Scholar
  20. 20.
    Quickenden T, Jiang X (1984) The diffusion coefficient of copper sulphate in aqueous solution. Electrochim Acta 29(6):693–700CrossRefGoogle Scholar
  21. 21.
    Moats MS, Hiskey JB, Collins DW (2000) The effect of copper, acid, and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy 56(3):255–268CrossRefGoogle Scholar
  22. 22.
    Kalliomäki T, Wilson BP, Aromaa J, Lundström M (2019) Diffusion coefficient of cupric ion in a copper electrorefining electrolyte containing nickel and arsenic. Miner Eng 134:381–389CrossRefGoogle Scholar
  23. 23.
    Gladysz O, Los P, Krzyzak E (2007) Influence of concentrations of copper, levelling agents and temperature on the diffusion coefficient of cupric ions in industrial electro-refining electrolytes. J Appl Electrochem 37(10):1093–1097CrossRefGoogle Scholar
  24. 24.
    Price DC, Davenport WG (1981) Physico-chemical properties of copper electrorefining and electrowinning electrolytes. Metall Trans B 12(4):639–643CrossRefGoogle Scholar
  25. 25.
    Araneda-Hernández E, Vergara-Gutierrez F, Pagliero-Neira A (2014) Effect of additives on diffusion coefficient for cupric ions and kinematics viscosity in CuSO4–H2SO4 solution at 60 C. Dyna 81(188):209–215CrossRefGoogle Scholar
  26. 26.
    Vanysek P (2000) Ionic conductivity and diffusion at infinite dilution. CRC Handb Chem Phys 83:76–78Google Scholar
  27. 27.
    Moats MS (2018) Energy efficiency of electrowinning. In: Energy efficiency in the minerals industry. Springer, pp 213–232Google Scholar
  28. 28.
    Popov K, Maksimović M, Djokić S (1981) Fundamental aspects of pulsating current metal electrodeposition III: Maximum practical deposition rate. Surface Technol 14(4):323–333CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Missouri University of Science and TechnologyRollaUSA

Personalised recommendations