Assessing and Managing Opioid-Related Side Effects in Children and Adolescents

  • Arjunan Ganesh
  • Lynne G. MaxwellEmail author


Opioids are still widely used in the management of severe acute and chronic pain in children. However, there are increased concerns related to both the acute side effects and chronic problems, which include the potential for abuse and addiction. A thorough knowledge of the mechanism of action of opioids is critical to the understanding of the pathogenesis of the various opioid-related side effects and facilitates appropriate prophylactic and therapeutic interventions to mitigate the incidence and severity of the same. In addition, the use of multimodal therapy, when possible, helps reduce the amount of opioid needed for pain relief and, thereby, decreases the incidence and severity of side effects. Opioids prescribed for home administration after discharge must be accompanied by family education about safe administration, storage, and disposal of medication.


Opioids Children Adverse effects Postoperative Pain 


  1. 1.
    Bruhn J, Scheffer GJ, van Geffen GJ. Clinical application of perioperative multimodal analgesia. Curr Opin Support Palliat Care. 2017;11(2):106–11.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Miech R, Johnston L, O’Malley PM, Keyes KM, Heard K. Prescription opioids in adolescence and future opioid misuse. Pediatrics. 2015;136(5):e1169–77.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Schmid CL, Kennedy NM, Ross NC, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171(5):1165–75.. e1113PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Reissig JE, Rybarczyk AM. Pharmacologic treatment of opioid-induced sedation in chronic pain. Ann Pharmacother. 2005;39(4):727–31.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stone P, Minton O. European Palliative Care Research collaborative pain guidelines. Central side-effects management: what is the evidence to support best practice in the management of sedation, cognitive impairment and myoclonus? Palliat Med. 2011;25(5):431–41.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Due MR, Piekarz AD, Wilson N, et al. Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. J Neuroinflammation. 2012;9:200.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    McCann S, Yaksh TL, von Gunten CF. Correlation between myoclonus and the 3-glucuronide metabolites in patients treated with morphine or hydromorphone: a pilot study. J Opioid Manag. 2010;6(2):87–94.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Anand KJ, Willson DF, Berger J, et al. Tolerance and withdrawal from prolonged opioid use in critically ill children. Pediatrics. 2010;125(5):e1208–25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol. 2007;17(5):556–64.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Finkel JC, Pestieau SR, Quezado ZM. Ketamine as an adjuvant for treatment of cancer pain in children and adolescents. J Pain. 2007;8(6):515–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Sheehy KA, Lippold C, Rice AL, Nobrega R, Finkel JC, Quezado ZM. Subanesthetic ketamine for pain management in hospitalized children, adolescents, and young adults: a single-center cohort study. J Pain Res. 2017;10:787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hallett BR, Chalkiadis GA. Suspected opioid-induced hyperalgesia in an infant. Br J Anaesth. 2012;108(1):116–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Vijayan V, Moran R, Elder ME, Sukumaran S. Acute-onset opioid-induced hyperalgesia in a child with juvenile idiopathic arthritis. J Clin Rheumatol. 2012;18(7):349–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Yaster M, Deshpande JK. Management of pediatric pain with opioid analgesics. J Pediatr. 1988;113(3):421–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Anghelescu DL, Patel RM, Mahoney DP, et al. Methadone prolongs cardiac conduction in young patients with cancer-related pain. J Opioid Manag. 2016;12(2):131–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Heath TS, Greenberg RG, Hupp SR, Turner DA, Hornik CP, Zimmerman KO. Effects of methadone on corrected Q-T interval prolongation in critically ill children. J Pediatr Pharmacol Ther. 2018;23(2):119–24.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Madden K, Park M, Liu D, Bruera E. The frequency of QTc prolongation among pediatric and young adult patients receiving methadone for cancer pain. Pediatr Blood Cancer. 2017;64:e26614.CrossRefGoogle Scholar
  18. 18.
    Johnstone RE, Jobes DR, Kennell EM, Behar MG, Smith TC. Reversal of morphine anesthesia with naloxone. Anesthesiology. 1974;41(4):361–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Chidambaran V, Olbrecht V, Hossain M, Sadhasivam S, Rose J, Meyer MJ. Risk predictors of opioid-induced critical respiratory events in children: naloxone use as a quality measure of opioid safety. Pain Med. 2014;15(12):2139–49.PubMedCrossRefGoogle Scholar
  20. 20.
    Donempudi VK, Sprung J, Weingarten TN. Pediatric patients receiving naloxone within 48 h of anesthesia: a case-control study. Pediatr Surg Int. 2018;34(3):335–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Kupferberg HJ, Way EL. Pharmacologic basis for the increased sensitivity of the newborn rat to morphine. J Pharmacol Exp Ther. 1963;141:105–12.PubMedGoogle Scholar
  22. 22.
    Lynn AM, Slattery JT. Morphine pharmacokinetics in early infancy. Anesthesiology. 1987;66(2):136–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Way WL, Costley EC, Leongway E. Respiratory sensitivity of the newborn infant to meperidine and morphine. Clin Pharmacol Ther. 1965;6:454–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Jay MA, Thomas BM, Nandi R, Howard RF. Higher risk of opioid-induced respiratory depression in children with neurodevelopmental disability: a retrospective cohort study of 12 904 patients. Br J Anaesth. 2017;118(2):239–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Niesters M, Overdyk F, Smith T, Aarts L, Dahan A. Opioid-induced respiratory depression in paediatrics: a review of case reports. Br J Anaesth. 2013;110(2):175–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Voepel-Lewis T, Marinkovic A, Kostrzewa A, Tait AR, Malviya S. The prevalence of and risk factors for adverse events in children receiving patient-controlled analgesia by proxy or patient-controlled analgesia after surgery. Anesth Analg. 2008;107(1):70–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Monitto CL, Greenberg RS, Kost-Byerly S, et al. The safety and efficacy of parent−/nurse-controlled analgesia in patients less than six years of age. Anesth Analg. 2000;91(3):573–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Sadhasivam S, Chidambaran V, Olbrecht VA, et al. Opioid-related adverse effects in children undergoing surgery: unequal burden on younger girls with higher doses of opioids. Pain Med. 2015;16(5):985–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Attia J, Ecoffey C, Sandouk P, Gross JB, Samii K. Epidural morphine in children: pharmacokinetics and CO2 sensitivity. Anesthesiology. 1986;65(6):590–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Nichols DG, Yaster M, Lynn AM, et al. Disposition and respiratory effects of intrathecal morphine in children. Anesthesiology. 1993;79(4):733–8; discussion 725A.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sadhasivam S, Chidambaran V, Zhang X, et al. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J. 2015;15(2):119–26.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chidambaran V, Mavi J, Esslinger H, et al. Association of OPRM1 A118G variant with risk of morphine-induced respiratory depression following spine fusion in adolescents. Pharmacogenomics J. 2015;15(3):255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nelson KL, Yaster M, Kost-Byerly S, Monitto CL. A national survey of American Pediatric Anesthesiologists: patient-controlled analgesia and other intravenous opioid therapies in pediatric acute pain management. Anesth Analg. 2010;110(3):754–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Miller KM, Kim AY, Yaster M, et al. Long-term tolerability of capnography and respiratory inductance plethysmography for respiratory monitoring in pediatric patients treated with patient-controlled analgesia. Paediatr Anaesth. 2015;25(10):1054–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pasero C. Assessment of sedation during opioid administration for pain management. J Perianesth Nurs. 2009;24(3):186–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Maddoxx RR, Williams CK. Clinical experience with capnography monitoring for PCA patients. Anesth Patient Saf Found Newsletter. 2012;26:47–50.Google Scholar
  37. 37.
    Bhalla AK, Khemani RG, Hotz JC, Morzov RP, Newth CJ. Accuracy of transcutaneous carbon dioxide levels in comparison to arterial carbon dioxide levels in critically ill children. Respir Care. 2018;64(2):201–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown KA, Laferriere A, Lakheeram I, Moss IR. Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology. 2006;105(4):665–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jitpakdee T, Mandee S. Strategies for preventing side effects of systemic opioid in postoperative pediatric patients. Paediatr Anaesth. 2014;24(6):561–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Cucchiaro G, Farrar JT, Guite JW, Li Y. What postoperative outcomes matter to pediatric patients? Anesth Analg. 2006;102(5):1376–82.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gomez-Arnau JI, Aguilar JL, Bovaira P, et al. Postoperative nausea and vomiting and opioid-induced nausea and vomiting: guidelines for prevention and treatment. Rev Esp Anestesiol Reanim. 2010;57(8):508–24.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Eberhart LH, Geldner G, Kranke P, et al. The development and validation of a risk score to predict the probability of postoperative vomiting in pediatric patients. Anesth Analg. 2004;99(6):1630–7, table of contents.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kranke P, Eberhart LH, Toker H, Roewer N, Wulf H, Kiefer P. A prospective evaluation of the POVOC score for the prediction of postoperative vomiting in children. Anesth Analg. 2007;105(6):1592–7, table of contents.PubMedCrossRefGoogle Scholar
  44. 44.
    Gan TJ, Diemunsch P, Habib AS, et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth Analg. 2014;118(1):85–113.PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts GW, Bekker TB, Carlsen HH, Moffatt CH, Slattery PJ, McClure AF. Postoperative nausea and vomiting are strongly influenced by postoperative opioid use in a dose-related manner. Anesth Analg. 2005;101(5):1343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Henzi I, Walder B, Tramer MR. Dexamethasone for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg. 2000;90(1):186–94.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Nakagawachi A, Yoshino J, Miura D, et al. Prophylactic effect of diphenhydramine on postoperative vomiting in children after laparoscopic surgery. Masui. 2012;61(9):988–92.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Maxwell LG, Kaufmann SC, Bitzer S, et al. The effects of a small-dose naloxone infusion on opioid-induced side effects and analgesia in children and adolescents treated with intravenous patient-controlled analgesia: a double-blind, prospective, randomized, controlled study. Anesth Analg. 2005;100(4):953–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Doyle E, Byers G, McNicol LR, Morton NS. Prevention of postoperative nausea and vomiting with transdermal hyoscine in children using patient-controlled analgesia. Br J Anaesth. 1994;72(1):72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dune LS, Shiao SY. Metaanalysis of acustimulation effects on postoperative nausea and vomiting in children. Explore (NY). 2006;2(4):314–20.CrossRefGoogle Scholar
  51. 51.
    Jindal V, Ge A, Mansky PJ. Safety and efficacy of acupuncture in children: a review of the evidence. J Pediatr Hematol Oncol. 2008;30(6):431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Crockett SD, Greer KB, Heidelbaugh JJ, et al. American Gastroenterological Association Institute Guideline on the medical management of opioid-induced constipation. Gastroenterology. 2019;156(1):218–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Dom S, Weyler JJ, Droste JH, et al. Determinants of baseline lung function and bronchodilator response in 4-year-old children. Eur Respir J. 2014;44(2):371–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Brock C, Olesen SS, Olesen AE, Frokjaer JB, Andresen T, Drewes AM. Opioid-induced bowel dysfunction: pathophysiology and management. Drugs. 2012;72(14):1847–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Kumar L, Barker C, Emmanuel A. Opioid-induced constipation: pathophysiology, clinical consequences, and management. Gastroenterol Res Pract. 2014;2014:141737.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tofil NM, Benner KW, Faro SJ, Winkler MK. The use of enteral naloxone to treat opioid-induced constipation in a pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(3):252–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Rawal N, Mollefors K, Axelsson K, Lingardh G, Widman B. An experimental study of urodynamic effects of epidural morphine and of naloxone reversal. Anesth Analg. 1983;62(7):641–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Malinovsky JM, Le Normand L, Lepage JY, et al. The urodynamic effects of intravenous opioids and ketoprofen in humans. Anesth Analg. 1998;87(2):456–61.PubMedGoogle Scholar
  59. 59.
    Goodarzi M. Comparison of epidural morphine, hydromorphone and fentanyl for postoperative pain control in children undergoing orthopaedic surgery. Paediatr Anaesth. 1999;9(5):419–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Ganesh A, Kim A, Casale P, Cucchiaro G. Low-dose intrathecal morphine for postoperative analgesia in children. Anesth Analg. 2007;104(2):271–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Garten L, Buhrer C. Reversal of morphine-induced urinary retention after methylnaltrexone. Arch Dis Child Fetal Neonatal Ed. 2012;97(2):F151–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Malinovsky JM, Lepage JY, Karam G, Pinaud M. Nalbuphine reverses urinary effects of epidural morphine: a case report. J Clin Anesth. 2002;14(7):535–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Gan TJ, Ginsberg B, Glass PS, Fortney J, Jhaveri R, Perno R. Opioid-sparing effects of a low-dose infusion of naloxone in patient-administered morphine sulfate. Anesthesiology. 1997;87(5):1075–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Woodhouse A, Hobbes AF, Mather LE, Gibson M. A comparison of morphine, pethidine and fentanyl in the postsurgical patient-controlled analgesia environment. Pain. 1996;64(1):115–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Horta ML, Ramos L, Goncalves ZR. The inhibition of epidural morphine-induced pruritus by epidural droperidol. Anesth Analg. 2000;90(3):638–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Yeh HM, Chen LK, Lin CJ, et al. Prophylactic intravenous ondansetron reduces the incidence of intrathecal morphine-induced pruritus in patients undergoing cesarean delivery. Anesth Analg. 2000;91(1):172–5.PubMedGoogle Scholar
  67. 67.
    Ko MC, Song MS, Edwards T, Lee H, Naughton NN. The role of central mu opioid receptors in opioid-induced itch in primates. J Pharmacol Exp Ther. 2004;310(1):169–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Thomas DA, Williams GM, Iwata K, Kenshalo DR Jr, Dubner R. The medullary dorsal horn. A site of action of morphine in producing facial scratching in monkeys. Anesthesiology. 1993;79(3):548–54.PubMedCrossRefGoogle Scholar
  69. 69.
    Scott PV, Fischer HB. Spinal opiate analgesia and facial pruritus: a neural theory. Postgrad Med J. 1982;58(683):531–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ganesh A, Maxwell LG. Pathophysiology and management of opioid-induced pruritus. Drugs. 2007;67(16):2323–33.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Macario A, Weinger M, Truong P, Lee M. Which clinical anesthesia outcomes are both common and important to avoid? The perspective of a panel of expert anesthesiologists. Anesth Analg. 1999;88(5):1085–91.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Charuluxananan S, Kyokong O, Somboonviboon W, Lertmaharit S, Ngamprasertwong P, Nimcharoendee K. Nalbuphine versus propofol for treatment of intrathecal morphine-induced pruritus after cesarean delivery. Anesth Analg. 2001;93(1):162–5.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Cohen SE, Ratner EF, Kreitzman TR, Archer JH, Mignano LR. Nalbuphine is better than naloxone for treatment of side effects after epidural morphine. Anesth Analg. 1992;75(5):747–52.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Nakatsuka N, Minogue SC, Lim J, et al. Intravenous nalbuphine 50 microg x kg(−1) is ineffective for opioid-induced pruritus in pediatrics. Can J Anaesth. 2006;53(11):1103–10.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Lawhorn CD, Brown RE Jr. Epidural morphine with butorphanol in pediatric patients. J Clin Anesth. 1994;6(2):91–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Arai L, Stayer S, Schwartz R, Dorsey A. The use of ondansetron to treat pruritus associated with intrathecal morphine in two paediatric patients. Paediatr Anaesth. 1996;6(4):337–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Borgeat A, Stirnemann HR. Ondansetron is effective to treat spinal or epidural morphine-induced pruritus. Anesthesiology. 1999;90(2):432–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Henry A, Tetzlaff JE, Steckner K. Ondansetron is effective in treatment of pruritus after intrathecal fentanyl. Reg Anesth Pain Med. 2002;27(5):538–40.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Murphy JD, Gelfand HJ, Bicket MC, et al. Analgesic efficacy of intravenous naloxone for the treatment of postoperative pruritus: a meta-analysis. J Opioid Manag. 2011;7(4):321–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Joshi GP, Duffy L, Chehade J, Wesevich J, Gajraj N, Johnson ER. Effects of prophylactic nalmefene on the incidence of morphine-related side effects in patients receiving intravenous patient-controlled analgesia. Anesthesiology. 1999;90(4):1007–11.PubMedCrossRefGoogle Scholar
  81. 81.
    Abboud TK, Afrasiabi A, Davidson J, et al. Prophylactic oral naltrexone with epidural morphine: effect on adverse reactions and ventilatory responses to carbon dioxide. Anesthesiology. 1990;72(2):233–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Pieters BJ, Anderson JT, Price N, Anson LM, Schwend RM. Low-dose versus high-dose postoperative naloxone infusion combined with patient-controlled analgesia for adolescent idiopathic scoliosis surgery: a randomized controlled trial. Spine Deform. 2018;6(4):430–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Connelly NR, Rahimi A, Parker RK. Nalmefene or naloxone for preventing intrathecal opioid mediated side effects in cesarean delivery patients. Int J Obstet Anesth. 1997;6(4):231–4.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Pellegrini JE, Bailey SL, Graves J, Paice JA, Shott S, Faut-Callahan M. The impact of nalmefene on side effects due to intrathecal morphine at cesarean section. AANA J. 2001;69(3):199–205.PubMedPubMedCentralGoogle Scholar
  85. 85.
    West N, Ansermino JM, Carr RR, Leung K, Zhou G, Lauder GR. A naloxone admixture to prevent opioid-induced pruritus in children: a randomized controlled trial. Can J Anaesth. 2015;62(8):891–900.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Drake R, Longworth J, Collins JJ. Opioid rotation in children with cancer. J Palliat Med. 2004;7(3):419–22.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Quigley C. Opioid switching to improve pain relief and drug tolerability. Cochrane Database Syst Rev. 2004;(3):CD004847.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Anesthesiology and Critical CareThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations