Biodegradable Natural Polymeric Nanoparticles as Carrier for Drug Delivery

  • M. Sumana
  • A. ThirumuruganEmail author
  • P. Muthukumaran
  • K. Anand
Part of the Engineering Materials book series (ENG.MAT.)


Nanotechnology has been a very interesting and led to the significant progress in a biomedicine field such as controlled drug and gene delivery. Nanoparticles have been used for drug delivery because of their efficiency and in particular, biodegradable nanoparticles are now being continuously explored because of their versatility and properties like good bioavailability, very less toxicity and enhanced encapsulation. These carriers play an efficient role in cancer therapy and controlled delivery of drug molecules to the target site. The present chapter focuses on the reason for using nanoparticles as drug carrier, various methods used for polymeric nanoparticles synthesis, and various applications of biopolymers-based nanoparticles in biomedical field.


Biopolymeric nanoparticles Preparation methods Drug loading Drug release Biomedical applications 


  1. Bagre, A. P., Jain, K., & Jain, N. K. (2013). Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. International Journal of Pharmaceutics, 456(1), 31–40.CrossRefGoogle Scholar
  2. Chakraborty, C., Sarkar, B., Hsu, C. H., Wen, Z. H., Lin, C. S., & Shieh, P. C. (2009). Future prospects of nanoparticles on brain targeted drug delivery. Journal of Neuro-oncology, 93(2), 285–286.CrossRefGoogle Scholar
  3. Davis, M. E., Chen, Z., & Shin, D. M. (2010). Nanoparticle therapeutics: An emerging treatment modality for cancer. In Nanoscience and technology: A collection of reviews from nature journals (pp. 239–250).Google Scholar
  4. Des Rieux, A., Fievez, V., Garinot, M., Schneider, Y. J., & Préat, V. (2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, 116(1), 1–27.CrossRefGoogle Scholar
  5. Ekman, B., & Sjöholm, I. (1978). Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique. Journal of Pharmaceutical Sciences, 67(5), 693–696.CrossRefGoogle Scholar
  6. Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 157(2), 168–182.CrossRefGoogle Scholar
  7. Gu, J., Chen, X., Xin, H., Fang, X., & Sha, X. (2014). Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. International Journal of Pharmaceutics, 461(1–2), 559–569.CrossRefGoogle Scholar
  8. Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.CrossRefGoogle Scholar
  9. Irache, J. M., Huici, M., Konecny, M., Espuelas, S., Campanero, M. A., & Arbos, P. (2005). Bioadhesive properties of Gantrez nanoparticles. Molecules, 10(1), 126–145.CrossRefGoogle Scholar
  10. Kim, B. G., & Kang, I. J. (2008). Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM. Ultramicroscopy, 108(10), 1168–1173.CrossRefGoogle Scholar
  11. Kreuter, J. (1991). Nanoparticle-based dmg delivery systems. Journal of Controlled Release, 16(1–2), 169–176.CrossRefGoogle Scholar
  12. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18.CrossRefGoogle Scholar
  13. Lemoine, D., & Préat, V. (1998). Polymeric nanoparticles as delivery system for influenza virus glycoproteins. Journal of Controlled Release, 54(1), 15–27.CrossRefGoogle Scholar
  14. Losa, C., Calvo, P., Castro, E., Vila-Jato, J. L., & Alonso, M. J. (1991). Improvement of ocular penetration of amikacin sulphate by association to poly (butylcyanoacrylate) nanoparticles. Journal of Pharmacy and Pharmacology, 43(8), 548–552.CrossRefGoogle Scholar
  15. Lowe, P. J., & Temple, C. S. (1994). Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: Protection against proteases and effect on intestinal absorption in rats. Journal of Pharmacy and Pharmacology, 46(7), 547–552.CrossRefGoogle Scholar
  16. Navni, S., Deepak, C., & Sandeep, K. (2018). Nanoparticles: Fundamental and prospectives. Research Journal of Pharmaceutical Biological and Chemical Sciences, 9(4), 152–164.Google Scholar
  17. Nobs, L., Buchegger, F., Gurny, R., & Allémann, E. (2006). Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjugate Chemistry, 17(1), 139–145.CrossRefGoogle Scholar
  18. Quintanar-Guerrero, D., Allémann, E., Fessi, H., & Doelker, E. (1998). Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Development and Industrial Pharmacy, 24(12), 1113–1128.CrossRefGoogle Scholar
  19. Reis, C. P., Neufeld, R. J., & Veiga, F. (2017). Preparation of drug-loaded polymeric nanoparticles. In Nanomedicine in cancer (pp. 197–240). Pan Stanford.Google Scholar
  20. Sanvicens, N., & Marco, M. P. (2008). Multifunctional nanoparticles—Properties and prospects for their use in human medicine. Trends in Biotechnology, 26(8), 425–433.CrossRefGoogle Scholar
  21. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1–2), 1–20.CrossRefGoogle Scholar
  22. Torchilin, V. P. (2006). Multifunctional nanocarriers. Advanced Drug Delivery Reviews, 58(14), 1532–1555.CrossRefGoogle Scholar
  23. Ud Din, F., Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 12, 7291.CrossRefGoogle Scholar
  24. Vauthier, C., Dubernet, C., Fattal, E., Pinto-Alphandary, H., & Couvreur, P. (2003). Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug Delivery Reviews, 55(4), 519–548.CrossRefGoogle Scholar
  25. Xia, Y., Xiong, Y., Lim, B., & Skrabalak, S. E. (2009). Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 48(1), 60–103.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Sumana
    • 1
  • A. Thirumurugan
    • 1
    Email author
  • P. Muthukumaran
    • 1
  • K. Anand
    • 2
  1. 1.Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory ServiceUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations