Advertisement

Nanomaterials in Nutraceuticals Applications

  • Mahendra Singh
  • Navneeta Singh
  • Balakumar ChandrasekaranEmail author
  • Pran Kishore Deb
Chapter
  • 42 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Diverse strategies are adopted to fight against various diseases and probable health risks. Besides the pharmaceutical approach, diet-based strategies are also deemed apt to avert various disorders. “Nutraceuticals” considered as bioactive components found in natural products. Bioactive components are additional nutritional ingredients that typically present in small quantities of foods that are used in day-to-day life and strongly believed to play a crucial role in the maintenance of our health. The food products used as nutraceuticals can be categorized as dietary fiber, prebiotics, probiotics, polyunsaturated fatty acids, antioxidants and other different types of herbal/natural foods. These nutraceuticals facilitate in combating a number of the major health problems including microbial infections. In recent years, nanotechnology-based formulations like micro- and nanoencapsulation have been a rising interest for nutraceutical, food and pharmaceutical applications. To enhance nutritional quality and stability of the nutraceuticals, one option is to encapsulate the functional ingredients using food-grade or “generally recognized as safe” (GRAS) materials that can exhibit controlled-release behavior. These diversity of building blocks and formulation methods led to nanocarriers like nanoemulsion, nanodispersion, nanoparticles, liposomes etc. with diverse physicochemical properties and functional characteristics. Based on the above-mentioned facts, this chapter provides an insight of some of the emerging nanomaterial-based applications being commercialized in nutraceuticals. A glimpse on various research work undertaken for the nanomaterials in the field of nutraceuticals is also discussed in this chapter.

Keywords

Nanomaterials Nutraceuticals Nanoformulations Physicochemical parameters 

Notes

Acknowledgements

One of the authors (BC) wish to thank Prof. Abdul Muttaleb Yousef Jaber, Dr. Yazan Al-Bataineh (The Dean), Prof. Mutaz Sheikh Salem (The President) and Prof. Marwan Kamal (University Counsellor) of Philadelphia University, Amman, Jordan for the constant support, motivation and research funding (No. 467/34/100 PU).

References

  1. Aboalnaja, K. O., Yaghmoor, S., Kumosani, T. A., & McClements, D. J. (2016). Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert opinion on drug delivery, 13(9), 1327–1336.CrossRefGoogle Scholar
  2. Aditya, N. P., Chimote, G., Gunalan, K., Banerjee, R., Patankar, S., & Madhusudhan, B. (2012). Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Experimental Parasitology, 131(3), 292–299.CrossRefGoogle Scholar
  3. Akhlaghi, S. P., Berry, R. M., & Tam, K. C. (2015). Modified cellulose nanocrystal for vitamin C delivery. An Official Journal of the American Association of Pharmaceutical Scientists, 16(2), 306–314.Google Scholar
  4. Alaarg, A., Jordan, N. Y., Verhoef, J. J., Metselaar, J. M., Storm, G., & Kok, R. J. (2016). Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: An in vitro assessment. International Journal of Nanomedicine, 11, 5027.CrossRefGoogle Scholar
  5. Alexander, M., Lopez, A. A., Fang, Y., & Corredig, M. (2012). Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. LWT-Food Science and Technology, 47(2), 427–436.CrossRefGoogle Scholar
  6. Annunziata, G., Tenore, G. C., & Novellino, E. (2018). Resveratrol-based nutraceuticals for the management of diabetes and obesity: Real therapeutic potential or a mere palliative. Archives of Diabetes & Obesity, 1–2.Google Scholar
  7. Aparna, C., Prathima, S., & Patnaik, R. (2015). Enhanced transdermal permeability of telmisartan by a novel nanoemulsion gel. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 335–342.Google Scholar
  8. Augustin, M. A., & Hemar, Y. (2009). Nano-and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, 38(4), 902–912.CrossRefGoogle Scholar
  9. Bochicchio, S., Barba, A. A., Grassi, G., & Lamberti, G. (2016). Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation. LWT-Food Science and Technology, 69, 9–16.CrossRefGoogle Scholar
  10. Caccamo, D., Curro, M., Ferlazzo, N., Condello, S., & Ientile, R. (2012). Monitoring of transglutaminase2 under different oxidative stress conditions. Amino Acids, 42, 1037–1043.CrossRefGoogle Scholar
  11. Calani, L., Brighenti, F., Bruni, R., & Del Rio, D. (2012). Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine, 20(1), 40–46.CrossRefGoogle Scholar
  12. Campos, D. A., Madureira, A. R., Gomes, A. M., Sarmento, B., & Pintado, M. M. (2014). Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids and Surfaces B: Biointerfaces, 115, 109–117.CrossRefGoogle Scholar
  13. Cencic, A., & Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2(6), 611–625.CrossRefGoogle Scholar
  14. Chakraborty, A., & Dhar, P. (2017). A review on potential of proteins as an excipient for developing a nano-carrier delivery system. Critical Reviews in Therapeutic Drug Carrier Systems, 34(5), 453–488.Google Scholar
  15. Choudhary, M., & Tomer, V. (2013). Cardioprotective effect of nutraceuticals—The emerging evidences. Proceedings of the Indian National Science Academy, 79(4), 985–996.Google Scholar
  16. Criado, P., Fraschini, C., Salmieri, S., Becher, D., Safrany, A., & Lacroix, M. (2016). Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiation Physics and Chemistry, 118, 61–69.CrossRefGoogle Scholar
  17. da Silva Malheiros, P., Daroit, D. J., & Brandelli, A. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology, 21(6), 284–292.CrossRefGoogle Scholar
  18. Davi, G., Santilli, F., & Patrono, C. (2010). Nutraceuticals in diabetes and metabolic syndrome. Cardiovascular Therapeutics, 28(4), 216–226.CrossRefGoogle Scholar
  19. De Felice, S. L. (1995). The nutraceutical revolution: Its impact on food industry R&D. Trends in Food Science & Technology, 6(2), 59–61.CrossRefGoogle Scholar
  20. Dissanayake, M., & Vasiljevic, T. (2009). Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. Journal of Dairy Science, 92, 1387–1397.CrossRefGoogle Scholar
  21. Doktorovova, S., Souto, E. B., & Silva, A. M. (2014). Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics, 87(1), 1–18.CrossRefGoogle Scholar
  22. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1–24.CrossRefGoogle Scholar
  23. Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26.CrossRefGoogle Scholar
  24. El-Leithy, E. S., Makky, A. M., Khattab, A. M., & Hussein, D. G. (2018). Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Development and Industrial Pharmacy, 44(2), 316–328.CrossRefGoogle Scholar
  25. Frede, K., Henze, A., Khalil, M., Baldermann, S., Schweigert, F. J., & Rawel, H. (2014). Stability and cellular uptake of lutein-loaded emulsions. Journal of Functional Foods, 8, 118–127.CrossRefGoogle Scholar
  26. Gao, Z., Spilk, S., Momen, A., Muller, M. D., Leuenberger, U. A., & Sinoway, L. I. (2012). Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment of myocardial function in healthy subjects. European Journal of Applied Physiology, 112, 483–492.CrossRefGoogle Scholar
  27. Ghosh, A., Mandal, A. K., Sarkar, S., & Das, N. (2011). Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Delivery, 18, 451–459.CrossRefGoogle Scholar
  28. Gopi, S., Amalraj, A., Haponiuk, J. T., & Thomas, S. (2016). Introduction of nanotechnology in herbal drugs and nutraceutical: A review. Journal of Nanomedicine and Biotherapeutic Discovery, 6, 143.CrossRefGoogle Scholar
  29. Gosal, W. S., Clark, A. H., & Ross-Murphy, S. B. (2004). Fibrillar β-lactoglobulin gels: Part 1. Fibril Formation and Structure. Biomacromolecules, 5, 2408–2419.CrossRefGoogle Scholar
  30. Grishkewich, N., Mohammed, N., Tang, J., & Tam, K. C. (2017). Recent advances in the application of cellulose nanocrystals. Current Opinion in Colloid & Interface Science, 29, 32–45.CrossRefGoogle Scholar
  31. Gunasekaran, S., Xiao, L., & OuldEleya, M. M. (2006). Whey protein concentrate hydrogels as bioactive carriers. Journal of Applied Polymer Science, 99, 2470–2476.CrossRefGoogle Scholar
  32. Huq, T., Fraschini, C., Khan, A., Riedl, B., Bouchard, J., & Lacroix, M. (2017). Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydrate Polymers, 168, 61–69.CrossRefGoogle Scholar
  33. Huq, T., Vu, K. D., Riedl, B., Bouchard, J., Han, J., & Lacroix, M. (2016). Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. Cellulose, 23(3), 1967–1978.CrossRefGoogle Scholar
  34. Ipsen, R., & Otte, J. (2007). Self-assembly of partially hydrolysed alpha-lactalbumin. Biotechnology Advances, 25, 602–605.CrossRefGoogle Scholar
  35. Javed, S., Kohli, K., & Ali, M. (2011). Reassessing bioavailability of silymarin. Alternative Medicine Review, 16(3), 239.Google Scholar
  36. Kanoujia, J., Singh, M., Singh, P., & Saraf, S. A. (2016). Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Materials Science and Engineering C: Materials for Biological Applications, 69, 967–976.CrossRefGoogle Scholar
  37. Khan, A., Wen, Y., Huq, T., & Ni, Y. (2017). Cellulosic nanomaterials in food and nutraceutical applications: A review. Journal of Agriculture and Food Chemistry, 66(1), 8–19.CrossRefGoogle Scholar
  38. Klyachko, N. L., Manickam, D. S., Brynskikh, A. M., Uglanova, S. V., Li, S., Higginbotham, S. M., et al. (2012). Crosslinked antioxidant nanozymes for improved delivery to CNS. Nanomedicine, 8, 119–129.CrossRefGoogle Scholar
  39. Lee, D. M., Jackson, K. W., Knowlton, N., Wages, J., Alaupovic, P., Samuelsson, O., et al. (2011). Oxidative stress and inflammation in renal patients and healthy subjects. PLoS ONE, 6, e22360.CrossRefGoogle Scholar
  40. Li, B., Du, W., Jin, J., & Du, Q. (2012a). Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry, 60, 3477–3484.CrossRefGoogle Scholar
  41. Li, N., Han, Z., Li, L., Zhang, B., Liu, Z., & Li, J. (2018). The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles. Drug Design, Development and Therapy, 12, 1399.CrossRefGoogle Scholar
  42. Li, Y., Xiao, H., & McClements, D. J. (2012b). Encapsulation and delivery of crystalline hydrophobic nutraceuticals using nanoemulsions: Factors affecting polymethoxyflavone solubility. Food Biophysics, 7(4), 341–353.CrossRefGoogle Scholar
  43. Lin, N., Huang, J., & Dufresne, A. (2012). Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale, 4(11), 3274.CrossRefGoogle Scholar
  44. McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.CrossRefGoogle Scholar
  45. Mehrad, B., Ravanfar, R., Licker, J., Regenstein, J. M., & Abbaspourrad, A. (2018). Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International, 105, 962–969.CrossRefGoogle Scholar
  46. Mohammadi, M., Pezeshki, A., Mesgari Abbasi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2017). Vitamin D3-loaded nanostructured lipid carriers as a potential approach for fortifying food beverages; in vitro and in vivo evaluation. Advanced Pharmaceutical Bulletin, 7(1), 61–71.CrossRefGoogle Scholar
  47. Mozafari, M. R. (2005). Liposomes: An overview of manufacturing techniques. Cellular & Molecular Biology Letters, 10(4), 711–719.Google Scholar
  48. Mukherjee, S., Ray, S., & Thakur, R. S. (2009). Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349.CrossRefGoogle Scholar
  49. Muller, R. H., & Keck, C. M. (2004). Challenges and solutions for the delivery of biotech drugs—A review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology, 113, 151–170.CrossRefGoogle Scholar
  50. Muller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54, S131–S155.CrossRefGoogle Scholar
  51. Nacka, F., Cansell, M., Meleard, P., & Combe, N. (2001). Incorporation of alpha-tocopherol in marine lipid-based liposomes: In vitro and in vivo studies. Lipids, 36, 1313–1320.CrossRefGoogle Scholar
  52. Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33, 178–185.CrossRefGoogle Scholar
  53. Nicolai, T., & Durand, D. (2013). Controlled food protein aggregation for new functionality. Current Opinion in Colloid & Interface Science, 18, 249–256.CrossRefGoogle Scholar
  54. Niki, E. (2014). Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radical Biology and Medicine, 66, 3–12.CrossRefGoogle Scholar
  55. Pandey, M., Verma, R. K., & Saraf, S. A. (2010). Nutraceuticals: New era of medicine and health. Asian Journal of Pharmaceutical and Clinical Research, 3(1), 11–15.Google Scholar
  56. Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105.CrossRefGoogle Scholar
  57. Ramezanzade, L., Hosseini, S. F., & Nikkhah, M. (2017). Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chemistry, 234, 220–229.CrossRefGoogle Scholar
  58. Rashidinejad, A., Birch, E. J., Sun-Waterhouse, D., & Everett, D. W. (2014). Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 156, 176–183.CrossRefGoogle Scholar
  59. Relkin, P., & Shukat, R. (2012). Food protein aggregates as vitamin-matrix carriers: Impact of processing conditions. Food Chemistry, 134, 2141–2148.CrossRefGoogle Scholar
  60. Riemann, A., Schneider, B., Ihling, A., Nowak, M., Sauvant, C., Thews, O., & Gekle, M. (2011). Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS ONE, 6, e22445Google Scholar
  61. Sadeghi, R., Kalbasi, A., Emam-jomeh, Z., Razavi, S. H., Kokini, J., & Moosavi-Movahedi, A. A. (2013). Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. Journal of Nanoparticle Research, 15, 1–11.CrossRefGoogle Scholar
  62. Severino, P., Andreani, T., Macedo, A. S., FangueiroJF, Santana M. H. A., Silva, A. M., & Souto, E. B. (2012). Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. Journal of Drug Delivery, 12, 1–10.CrossRefGoogle Scholar
  63. Shah, A. V., Desai, H. H., Thool, P., Dalrymple, D., & Serajuddin, A. T. (2018). Development of self-microemulsifying drug delivery system for oral delivery of poorly water-soluble nutraceuticals. Drug Development and Industrial Pharmacy, 44(6), 895–901.CrossRefGoogle Scholar
  64. Shahidi, F., & Li, Q. (2014). Biologically active peptides from foods. Applied Food Protein Chemistry, 75–98.Google Scholar
  65. Shinde, N., Bangar, B., Deshmukh, S., & Kumbhar, P. (2014). Nutraceuticals: A review on current status. Research Journal of Pharmacy and Technology, 7(1), 1–5.Google Scholar
  66. Shoji, Y., & Nakashima, H. (2004). Nutraceutics and delivery systems. Journal of Drug Targeting, 12, 385–391.CrossRefGoogle Scholar
  67. Shpigelman, A., Cohen, Y., & Livney, Y. D. (2012). Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids, 29, 57–67.CrossRefGoogle Scholar
  68. Singh, M., Kanoujia, J., Parashar, P., Arya, M., Tripathi, C. B., Sinha, V. R., et al. (2018). Augmented bioavailability of felodipine through an α-linolenic acid-based microemulsion. Drug Delivery and Translational Research, 8(1), 204–225.CrossRefGoogle Scholar
  69. Singh, M., Kanoujia, J., Singh, P., Tripathi, C. B., Arya, M., Parashar, P., et al. (2016a). Development of an α-linolenic acid containing soft nanocarrier for oral delivery: In vitro and in vivo evaluation. RSC Advances, 81, 77590–77602.CrossRefGoogle Scholar
  70. Singh, P., Singh, M., Kanoujia, J., Arya, M., Saraf, S. K., & Saraf, S. A. (2016b). Process optimization and photostability of silymarin nanostructured lipid carriers: Effect on UV-irradiated rat skin and SK-MEL 2 cell line. Drug Delivery and Translational Research, 6(5), 597–609.CrossRefGoogle Scholar
  71. Sinha, V. R., & Kumria, R. (2001). Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, 224, 19–38.CrossRefGoogle Scholar
  72. Sivakumar, M., Tang, S. Y., & Tan, K. W. (2014). Cavitation technology—A greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrasonics Sonochemistry, 21, 2069–2083.Google Scholar
  73. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nanoemulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102–110.CrossRefGoogle Scholar
  74. Souyoul, S. A., Saussy, K. P., & Lupo, M. P. (2018). Nutraceuticals: A review. Dermatologic Therapy, 1–12.Google Scholar
  75. Spernath, A., & Aserin, A. (2006). Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science, 128, 47–64.Google Scholar
  76. Takahashi, M., Uechi, S., Takara, K., Asikin, Y., & Wada, K. (2009). Evaluation of an oral carrier system in rats: Bioavailability and antioxidant properties of liposome-encapsulated curcumin. Journal of Agriculture and Food Chemistry, 57, 9141–9146.CrossRefGoogle Scholar
  77. Takechi, R., Pallebage-Gamarallage, M. M., Lam, V., Giles, C., & Mamo, J. C. (2013). Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice. Journal of Neuroinflammation, 10(1), 842.CrossRefGoogle Scholar
  78. Tan, C., Xue, J., Lou, X., Abbas, S., Guan, Y., Feng, B., et al. (2014). Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Function, 5(6), 1232–1240.CrossRefGoogle Scholar
  79. Tasset, I., Pontes, A. J., Hinojosa, A. J., de la Torre, R., & Tunez, I. (2011). Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutritional Neuroscience, 14, 106–111.Google Scholar
  80. Tian, Y. Y., Ge, L., Duan, X. L., Gao, Z. Q., & Chang, Y. Z. (2007). Lycopene liposomes: Lycopene release in vitro and pharmaceutical behaviors and antioxidation in vivo. Yao Xue Xue Bao, 42, 1107–1111.Google Scholar
  81. Ting, Y. W., Jiang, Y., Ho, C. T., & Huang, Q. R. (2014). Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods, 7, 112–128.CrossRefGoogle Scholar
  82. Tripathi, C. B., Parashar, P., Arya, M., Singh, M., Kanoujia, J., Kaithwas, G., et al. (2018). QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: In vitro and in vivo evaluation. Drug Delivery and Translational Research, 10, 1–22.Google Scholar
  83. Ullah, H., Wahid, F., Santos, H. A., & Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330–352.CrossRefGoogle Scholar
  84. Vakilinezhad, M. A., Tanha, S., Montaseri, H., Dinarvand, R., Azadi, A., & Javar, H. A. (2018). Application of response surface method for preparation, optimization, and characterization of nicotinamide loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin, 8(2), 245.CrossRefGoogle Scholar
  85. Wagoner, J., Morishima, C., Graf, T. N., Oberlies, N. H., Teissier, E., Pecheur, E. I., et al. (2011). Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS ONE, 6, e16464.CrossRefGoogle Scholar
  86. Wang, D., Zhao, P., Cuia, F., & Li, X. (2007). Preparation and characterization of solid lipid nanoparticles loaded with total flavones of Hippophae rhamnoides (TFH). PDA Journal of Pharmaceutical Science and Technology, 61, 110–120.Google Scholar
  87. Wang, Y., Xu, H., Fu, Q., Ma, R., & Xiang, J. (2011). Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. Journal of the Neurological Sciences, 304, 29–34.CrossRefGoogle Scholar
  88. Weber, S., Zimmer, A., & Pardeike, J. (2014). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 86, 7–22.CrossRefGoogle Scholar
  89. Xianquan, S., Shi, J., Kakuda, Y., & Yueming, J. (2005). Stability of lycopene during food processing and storage. Journal of Medicinal Food, 8(4), 413–422.CrossRefGoogle Scholar
  90. Yi, J., Liu, Y., Zhang, Y., & Gao, L. (2018). Fabrication of resveratrol-loaded whey protein-dextran colloidal complex for the stabilization and delivery of β-carotene emulsions. Journal of Agriculture and Food Chemistry, 66(36), 9481–9489.CrossRefGoogle Scholar
  91. Yu, H., & Huang, Q. (2012). Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of Agriculture and Food Chemistry, 60(21), 5373–5379.CrossRefGoogle Scholar
  92. Zheng, Y., Monty, J., & Linhardt, R. J. (2015). Polysaccharide-based nanocomposites and their applications. Carbohydrate Research, 405, 23–32.CrossRefGoogle Scholar
  93. Zimet, P., & Livney, Y. D. (2009). Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 23, 1120–1126.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mahendra Singh
    • 1
  • Navneeta Singh
    • 2
  • Balakumar Chandrasekaran
    • 3
    Email author
  • Pran Kishore Deb
    • 3
  1. 1.Formulation Research & Development, Brawn Laboratories Private LimitedFaridabadIndia
  2. 2.G.S.R.M. College of PharmacyLucknowIndia
  3. 3.Faculty of PharmacyPhiladelphia UniversityAmmanJordan

Personalised recommendations