Nanomedicines in Tuberculosis: Diagnosis, Therapy and Nanodrug Delivery

  • Abdel Naser DakkahEmail author
  • Yazan Bataineh
  • Bilal A AL Jaidi
  • Mohammad F. Bayan
  • Nabil A. Nimer
Part of the Engineering Materials book series (ENG.MAT.)


Nanoparticle-based delivery systems represent a promising nano medications to deliver a therapeutic agent, selectively and effectively, to a specific tissue or organ in the body; thus treating chronic diseases such as tuberculosis. The delivery of first-line and second-line antituberculosis drugs, using synthetic or natural polymeric carriers, has been extensively reported as a potential intermittent chemotherapy. In addition to the prolonged drug release, this delivery system can enhance the therapeutic efficacy, reduce dosing frequency and side effects, and increase the possibility of selecting different routes of chemotherapy and targeting the site of infection. The choice of carrier, system stability, toxicity and production capacity are the main considerations during the development of such system. Regardless of the obstacles, the nano drug delivery have systems shown a promising effectiveness in treating TB.


Nanomedicines Nanodrug delivery Chemotherapy Tuberculosis 


  1. Abdulla, J. M., Tan, Y. T., & Darwis, Y. (2010). Rehydrated lyophilized rifampicin-loaded mPEGDSPE formulations for nebulization. AAPS PharmSciTech, 11, 663–671.CrossRefGoogle Scholar
  2. Agarwal, A., Kandpal, H., Gupta, H. P., Singh, N. B., & Gupta, C. M. (1994). Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrobial Agents and Chemotherapy, 38, 588–593.CrossRefGoogle Scholar
  3. Ahmad, S., & Mokaddas, E. (2014). Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis. Journal of Infection and Public Health, 7, 75–91.CrossRefGoogle Scholar
  4. Ahmad, Z., Sharma, S., & Khuller, G. K. (2005). Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. International Journal of Antimicrobial Agents, 26, 298–303.CrossRefGoogle Scholar
  5. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.CrossRefGoogle Scholar
  6. Al-Hallak, M. H. D. K., Sarfraz, M. K., Azarmi, S., Roa, W. H., Finlay, W. H., & Rouleau, C. (2012). Distribution of effervescent inhalable nanoparticles after pulmonary delivery: An in vivo study. Therapeutic Delivery, 3, 725–773.CrossRefGoogle Scholar
  7. Amani, A., Amini, M. A., Ali, H. S., & York, P. (2011). Alternatives to conventional suspensions for pulmonary drug delivery by nebulisers: A review. Journal of Pharmaceutical Sciences, 100, 4563–4570.CrossRefGoogle Scholar
  8. Anabousi, S., Kleemann, E., Bakowsky, U., Kissel, T., Schmehl, T., Gessler, T., et al. (2006). Effect of PEGylation on the stability of liposomes during nebulisation and in lung surfactant. Journal of Nanoscience and Nanotechnology, 6, 3010–3016.CrossRefGoogle Scholar
  9. Andersen, P., Munk, M. E., Pollock, J. M., & Doherty, T. M. (2000). Specific immune-based diagnosis of tuberculosis. Lancet, 356, 1099–1104.CrossRefGoogle Scholar
  10. Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827.CrossRefGoogle Scholar
  11. Asadi Gharabaghi, M. (2012). Cutaneous tuberculosis caused by isoniazid-resistant Mycobacterium tuberculosis. BMJ Case Reports. (2012).Google Scholar
  12. Azarmi, S., Lobenberg, R., Roa, W. H., Tai, S., & Finlay, W. H. (2008). Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Development and Industrial Pharmacy, 34, 943–947.CrossRefGoogle Scholar
  13. Bajpai, A. K., & Gupta, R. (2011). Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. Journal of Materials Science. Materials in Medicine, 22, 357–369.CrossRefGoogle Scholar
  14. Bangham, A. D. (1993). Liposomes: The Babraham connection. Chemistry and Physics of Lipids, 64, 275–285.CrossRefGoogle Scholar
  15. Barry, C. E., III, Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., et al. (2009). The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nature Reviews Microbiology, 7, 845–855.CrossRefGoogle Scholar
  16. Beck-Broichsitter, M., Merkel, O. M., & Kissel, T. (2012). Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of Controlled Release, 161, 214–224.CrossRefGoogle Scholar
  17. Behr, M. A., Warren, S. A., Salamon, H., Hopewell, P. C., Ponce de Leon, A., Daley, C. L., et al. (1999). Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet, 353, 444–449.Google Scholar
  18. Bellini, R. G., Guimarães, A. P., Pacheco, M. A. C., Dias, D. M., Furtado, V. R., de Alencastro, R. B., et al. (2015). Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. Journal of Molecular Graphics and Modelling, 60, 34–42.CrossRefGoogle Scholar
  19. Booysen, L. L., Kalombo, L., Brooks, E., Hansen, R., Gilliland, J., Gruppo, V., et al. (2013). In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. International Journal of Pharmaceutics, 444, 10–17.CrossRefGoogle Scholar
  20. Bosquillon, C., Lombry, C., Preat, V., & Vanbever, R. (2001). Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. Journal of Controlled Release, 70, 329–339.CrossRefGoogle Scholar
  21. Breslauer, D. N., Maamari, R. N., Switz, N. A., Lam, W. A., & Fletcher, D. A. (2009). Mobile phone based clinical microscopy for global health applications. PLoS One 2009; 4.Google Scholar
  22. Buijtels, P. C., Willemse-Erix, H. F., Petit, P. L., Endtz, H. P., Puppels, G. J., Verbrugh, H. A., et al. (2008). Rapid identification of mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46, 961–965.CrossRefGoogle Scholar
  23. Caon, T., Campos, C. E., Simoes, C. M., & Silva, M. A. (2015). Novel perspectives in the tuberculosis treatment: Administration of isoniazid through the skin. International Journal of Pharmaceutics, 494, 463–470.CrossRefGoogle Scholar
  24. Cattamanchi, A., Smith, R., Steingart, K. R., Metcalfe, J. Z., Date, A., Coleman, C., et al. (2011). Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: A systematic review and meta-analysis. Journal of Acquired Immune Deficiency Syndromes, 56, 230–238.CrossRefGoogle Scholar
  25. Chan, J. G., Chan, H. K., Prestidge, C. A., Denman, J. A., Young, P. M., & Traini, D. (2013). A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. European Journal of Pharmaceutics and Biopharmaceutics, 83, 285–292.CrossRefGoogle Scholar
  26. Chen, T., Li, Q., Guo, L., Yu, L., Li, Z., Guo, H., et al. (2016). Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis. Materials Science and Engineering C: Materials for Biological Applications, 58, 659–665.CrossRefGoogle Scholar
  27. Chen, J., Zhang, R., Wang, J., Liu, L., Zheng, Y., Shen, Y., et al. (2011). Interferon-gamma release assays for the diagnosis of active tuberculosis in HIV-infected patients: A systematic review and meta-analysis. PLoS ONE, 6, e26827.CrossRefGoogle Scholar
  28. Cheow, W. S., & Hadinoto, K. (2010). Enhancing encapsulation efficiency of highly water-soluble antibiotic in poly(lactic-co-glycolic acid) nanoparticles: Modifications of standard nanoparticle preparation methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370, 79–86.CrossRefGoogle Scholar
  29. Cheow, W. S., & Hadinoto, K. (2011). Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces, 85, 214–220.CrossRefGoogle Scholar
  30. Chimote, G., & Banerjee, R. (2005). Effect of antitubercular drugs on dipalmitoylphosphatidylcholine monolayers: Implications for drug loaded surfactants. Respiratory Physiology & Neurobiology, 145, 65–77.CrossRefGoogle Scholar
  31. Chimote, G., & Banerjee, R. (2009). Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. Journal of Biomedical Materials Research, 89, 281–292.CrossRefGoogle Scholar
  32. Chono, S., Kaneko, K., Yamamoto, E., Togami, K., & Morimoto, K. (2010). Effect of surface mannose modification on aerosolized liposomal delivery to alveolar macrophages. Drug Development and Industrial Pharmacy, 36, 102–107.CrossRefGoogle Scholar
  33. Choonara, Y. E., Pillay, V., Ndesendo, V. M. K., du Toit, L. C., Kumar, P., Khan, R. A., et al. (2011). Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids and Surfaces B: Biointerfaces, 87, 243–254.CrossRefGoogle Scholar
  34. Chow, A. H., Tong, H. H., Chattopadhyay, P., & Shekunov, B. Y. (2007). Particle engineering for pulmonary drug delivery. Pharmaceutical Research, 24, 411–437.CrossRefGoogle Scholar
  35. Chuan, J., Li, Y., Yang, L., Sun, X., Zhang, Q., Gong, T., et al. (2013). Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. Journal of Nanoparticle Research, 15, 1–9.CrossRefGoogle Scholar
  36. Chun, A. L. (2009). Nanoparticles offer hope for TB detection. Nature Nanotechnology, 4, 698–699.CrossRefGoogle Scholar
  37. Clemens, D. L., Lee, B. Y., Xue, M., Thomas, C. R., Meng, H., Ferris, D., et al. (2012). Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrobial Agents and Chemotherapy, 56, 2535–2545.CrossRefGoogle Scholar
  38. Cobelens, F. G., Egwaga, S. M., van Ginkel, T., Muwinge, H., Matee, M. I., & Borgdorff, M. W. (2006). Tuberculin skin testing in patients with HIV infection: Limited benefit of reduced cutoff values. Clinical Infectious Diseases, 43, 634–639.CrossRefGoogle Scholar
  39. Costa, P., Amaro, A., Botelho, A., Inacio, J., & Baptista, P. V. (2010). Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clinical Microbiology & Infection, 16, 1464–1469.CrossRefGoogle Scholar
  40. Costa, A., Sarmento, B., & Seabra, V. (2015). Targeted drug delivery systems for lung macrophages. Current Drug Targets, 16, 1565–1581.CrossRefGoogle Scholar
  41. Dames, P., Gleich, B., Flemmer, A., Hajek, K., Seidl, N., Wiekhorst, F., et al. (2007). Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotechnology, 2, 495–499.CrossRefGoogle Scholar
  42. Dartois, V. (2014). The path of anti-tuberculosis drugs: From blood to lesions to mycobacterial cells. Nature Reviews Microbiology, 12, 159–167.CrossRefGoogle Scholar
  43. Das, S., Tucker, I., & Stewart, P. (2015). Inhaled dry powder formulations for treating tuberculosis. Current Drug Delivery, 12, 26–39.Google Scholar
  44. de Faria, T. J., Roman, M., de Souza, N. M., De Vecchi, R., de Assis, J. V., dos Santos, A. L., et al. (2012). An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrobial Agents and Chemotherapy, 56, 2259–2267.CrossRefGoogle Scholar
  45. Deol, P., Khuller, G. K., & Joshi, K. (1997). Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrobial Agents and Chemotherapy, 41, 1211–1214.CrossRefGoogle Scholar
  46. Desai, T. R., Hancock, R. E. W., & Finlay, W. H. (2002a). A facile method of delivery of liposomes by nebulization. Journal of Controlled Release, 84, 69–78.CrossRefGoogle Scholar
  47. Desai, T. R., Wong, J. P., Hancock, R. E. W., & Finlay, W. H. (2002b). A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. Journal of Pharmaceutical Sciences, 91, 482–491.CrossRefGoogle Scholar
  48. Dheda, K., van Zyl Smit, R., Badri, M., & Pai, M. (2009). T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: Clinical utility in high-burden vs. low-burden settings. Current Opinion in Pulmonary Medicine, 15, 188–200.Google Scholar
  49. Diaz-Gonzalez, M., Gonzalez-Garcia, M. B., & Costa-Garcia, A. (2005). Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosensors & Bioelectronics, 20, 2035–2043.CrossRefGoogle Scholar
  50. Douglas, J. G., & McLeod, M. J. (1999). Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clinical Pharmacokinetics, 37, 127–146.CrossRefGoogle Scholar
  51. du Toit, L. C., Pillay, V., & Danckwerts, M. P. (2006). Tuberculosis chemotherapy: Current drug delivery approaches. Respiratory Research, 7, 118.CrossRefGoogle Scholar
  52. Dunlap, N. E., Bass, J., Fujiwara, P., Hopewell, P., Horsburgh, C. R., & Salfinger, H. M. (2000). Diagnostic standards and classification of tuberculosis in adults and children. American Journal of Respiratory and Critical Care Medicine, 161, 1376–1395.CrossRefGoogle Scholar
  53. El-Gendy, N., Desai, V., & Berkland, C. (2010). Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. Journal of Pharmaceutical Innovation, 5, 79–87.CrossRefGoogle Scholar
  54. Ely, L., Roa, W., Finlay, W. H., & Lobenberg, R. (2007). Effervescent dry powder for respiratory drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 65, 346–353.CrossRefGoogle Scholar
  55. Esmaeili, F., Hosseini-Nasr, M., Rad-Malekshahi, M., Samadi, N., Atyabi, F., & Dinarvand, R. (2007). Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine, 3, 161–167.CrossRefGoogle Scholar
  56. Farhat, M., Greenaway, C., Pai, M., & Menzies, D. (2006). False-positive tuberculin skin tests: What is the absolute effect of BCG and non-tuberculous mycobacteria? International Journal of Tuberculosis and Lung Disease, 10, 1192–1204.Google Scholar
  57. Feng, H., Zhang, L., & Zhu, C. (2013). Genipin crosslinked ethyl cellulose–chitosan complex microspheres for anti-tuberculosis delivery. Colloids and Surfaces B: Biointerfaces, 103, 530–537.CrossRefGoogle Scholar
  58. Ferron, G. A. (1994). Aerosol properties and lung deposition. European Respiratory Journal, 7, 1392–1394.CrossRefGoogle Scholar
  59. Ferron, G. A., Upadhyay, S., Zimmermann, R., & Karg, E. (2013). Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 26, 101–119.CrossRefGoogle Scholar
  60. Finlay, W. H., & Wong, J. P. (1998). Regional lung deposition of nebulized liposome encapsulated ciprofloxacin. International Journal of Pharmaceutics, 167, 121–127.CrossRefGoogle Scholar
  61. Gao, L., Liu, G., Ma, J., Wang, X., Zhou, L., & Li, X. (2012). Drug nanocrystals: In vivo performances. Journal of Controlled Release, 160, 418–430.CrossRefGoogle Scholar
  62. Garg, T., Rath, G., & Goyal, A. K. (2015). Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artificial Cells, Nanomedicine, and Biotechnology, 44, 997–1001.Google Scholar
  63. Gaur, P. K., Mishra, S., Gupta, V. B., Rathod, M. S., Purohit, S., & Savla, B. A. (2010). Targeted drug delivery of rifampicin to the lungs: Formulation, characterization, and stability studies of preformed aerosolized liposome and in situ formed aerosolized liposome. Drug Development and Industrial Pharmacy, 36, 638–646.CrossRefGoogle Scholar
  64. Gill, S., Löbenberg, R., Ku, T., Azarmi, S., Roa, W., & Prenner, E. J. (2007). Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—A review. Journal of Biomedical Nanotechnology, 3, 107–119.CrossRefGoogle Scholar
  65. Ginsberg, A. M. (2010). Tuberculosis drug development: Progress, challenges, and the road ahead. Tuberculosis, 90, 162–167.CrossRefGoogle Scholar
  66. Grenha, A., Seijo, B., & Remunan-Lopez, C. (2005). Microencapsulated chitosan nanoparticles for lung protein delivery. European Journal of Pharmaceutical Sciences, 25, 427–437.CrossRefGoogle Scholar
  67. Grosset, J. H., Singer, T. G., & Bishai, W. R. (2012). New drugs for the treatment of tuberculosis: Hope and reality. International Journal of Tuberculosis and Lung Disease, 16, 1005–1014.CrossRefGoogle Scholar
  68. Hanif, S. N., & Garcia-Contreras, L. (2012). Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Frontiers in Cellular and Infection Microbiology, 2, 118.CrossRefGoogle Scholar
  69. He, F., Zhao, J., Zhang, L., & Su, X. (2003). A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 59, 935–941.CrossRefGoogle Scholar
  70. Hearn, M. J., & Cynamon, M. H. (2003). In vitro and in vivo activities of acylated derivatives of isoniazid against Mycobacterium tuberculosis. Drug Design and Discovery, 18, 103–108.CrossRefGoogle Scholar
  71. Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., & Joo-On Kang, H. (2009). Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. European Journal of Medicinal Chemistry, 44, 4169–4178.CrossRefGoogle Scholar
  72. Hokey, D. A., & Misra, A. (2011). Aerosol vaccines for tuberculosis: A fine line between protection and pathology. Tuberculosis, 91, 82–85.CrossRefGoogle Scholar
  73. Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493.CrossRefGoogle Scholar
  74. Hong, S. C., Chen, H. X., Lee, J., Park, H. K., Kim, Y. S., Shin, H. C., et al. (2011). Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sensors and Actuators B: Chemical, 156, 271–275.CrossRefGoogle Scholar
  75. Höök, F., Kasemo, B., Nylander, T., Fant, C., Sott, K., & Elwing, H. (2001). Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical Chemistry, 73, 5796–5804.CrossRefGoogle Scholar
  76. Horváti, K., Bacsa, B., Kiss, É., Gyulai, G., Fodor, K., Balka, G., et al. (2014). Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: In vitro intracellular activity and in vivo efficacy in a guinea pig model of tuberculosis. Bioconjugate Chemistry, 25, 2260–2268.CrossRefGoogle Scholar
  77. Horváti, K., Bacsa, B., Szabo, N., Fodor, K., Balka, G., Rusvai, M., et al. (2015). Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis, 95, S207–S211.CrossRefGoogle Scholar
  78. Jain, D., & Banerjee, R. (2008). Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 86, 105–112.CrossRefGoogle Scholar
  79. Jain, S. K., Gupta, Y., Ramalingam, L., Jain, A., Jain, A., Khare, P., et al. (2010). Lactoseconjugated PLGA nanoparticles for enhanced delivery of rifampicin to the lung for effective treatment of pulmonary tuberculosis. Journal of Pharmaceutical Science and Technology, 64, 278–287.Google Scholar
  80. Johnson, C. M., Pandey, R., Sharma, S., Khuller, G. K., Basaraba, R. J., Orme, I. M., et al. (2005). Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 49, 4335–4338.CrossRefGoogle Scholar
  81. Justo, O. R., & Moraes, A. M. (2003). Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Delivery, 10, 201–207.CrossRefGoogle Scholar
  82. Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angewandte Chemie International Edition, 48, 5418–5429.CrossRefGoogle Scholar
  83. Kajjari, P. B., Manjeshwar, L. S., & Aminabhavi, T. M. (2012). Novel pH- and temperature responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid. AAPS PharmSciTech, 13, 1147–1157.CrossRefGoogle Scholar
  84. Keijsers, R. R., Bovenschen, H. J., & Seyger, M. M. (2011). Cutaneous complication after BCG vaccination: Case report and review of the literature. Journal of Dermatological Treatment, 22, 315–318.CrossRefGoogle Scholar
  85. Kennedy, E. J. (2013). Biological drug products: Development and strategies. Hoboken: Wiley.Google Scholar
  86. Kong, F., Zhou, F., Ge, L., Liu, X., & Wang, Y. (2012). Mannosylated liposomes for targeted gene delivery. International Journal of Nanomedicine, 7, 1079–1089.CrossRefGoogle Scholar
  87. Lee, J. Y. (2015). Diagnosis and treatment of extrapulmonary tuberculosis. Tuberculosis and Respiratory Diseases, 78, 47–55.CrossRefGoogle Scholar
  88. Lee, W., Loo, C., Traini, D., & Young, P. M. (2015). Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opinion on Drug Delivery, 12, 1009–1026.CrossRefGoogle Scholar
  89. Lee, H., Sun, E., Ham, D., & Weissleder, R. (2008). Chip-NMR biosensor for detection and molecular analysis of cells. Nature Medicine, 14, 869–874.CrossRefGoogle Scholar
  90. Li, X., Xue, M., Raabe, O. G., Aaron, H. L., Eisen, E. A., Evans, J. E., et al. (2015). Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine, 11, 1377–1385.CrossRefGoogle Scholar
  91. Ling, D. I., Pai, M., Davids, V., Brunet, L., Lenders, L., Meldau, R., et al. (2011). Are interferon-gamma release assays useful for diagnosing active tuberculosis in a high-burden setting? European Respiratory Journal, 38, 649–656.CrossRefGoogle Scholar
  92. Malathi, S., & Balasubramanian, S. (2011). Synthesis of biodegradable polymeric nanoparticles and their controlled drug delivery for tuberculosis. Journal of Biomedical Nanotechnology, 7, 150–151.CrossRefGoogle Scholar
  93. Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65, 689–702.CrossRefGoogle Scholar
  94. Manion, J. A. R., Cape, S. P., McAdams, D. H., Rebits, L. G., Evans, S., & Sievers, R. E. (2012). Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Science and Technology, 46, 403–410.CrossRefGoogle Scholar
  95. Martin, C. (2005). The dream of a vaccine against tuberculosis: New vaccines improving or replacing BCG? European Respiratory Journal, 26, 162–167.CrossRefGoogle Scholar
  96. Mazurek, G. H., Jereb, J., Lobue, P., Iademarco, M. F., Metchock, B., & Vernon, A. (2005). Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR Recommendations and Reports, 54, 49–55.Google Scholar
  97. Mehanna, M. M., Mohyeldin, S. M., & Elgindy, N. A. (2014). Respirable nanocarriers as a promising strategy for antitubercular drug delivery. Journal of Controlled Release, 187, 183–197.CrossRefGoogle Scholar
  98. Metcalfe, J. Z., Everett, C. K., Steingart, K. R., Cattamanchi, A., Huang, L., Hopewell, P. C., et al. (2011). Interferon-gamma release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: Systematic review and meta-analysis. Journal of Infectious Diseases, 204(Suppl. 4), S1120–S1129.CrossRefGoogle Scholar
  99. Misra, A., Hickey, A. J., Rossi, C., Borchard, G., Terada, H., Makino, K., et al. (2011). Inhaled drug therapy for treatment of tuberculosis. Tuberculosis, 91, 71–81.CrossRefGoogle Scholar
  100. Mitchison, D. A., & Fourie, P. B. (2010). The near future: Improving the activity of rifamycins and pyrazinamide. Tuberculosis, 90, 177–181.CrossRefGoogle Scholar
  101. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. FASEB Journal, 19, 311–330.CrossRefGoogle Scholar
  102. Moretton, M. A., Hocht, C., Taira, C., & Sosnik, A. (2014). Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine (London), 9, 1635–1650.CrossRefGoogle Scholar
  103. Mouritsen, O. G. (2011). Model answers to lipid membrane questions. Cold Spring Harbor Perspectives in Biology, 3, a004622.CrossRefGoogle Scholar
  104. Muttil, P., Wang, C., & Hickey, A. J. (2009). Inhaled drug delivery for tuberculosis therapy. Pharmaceutical Research, 26, 2401–2416.CrossRefGoogle Scholar
  105. Nagel, T., Ehrentreich-Forster, E., Singh, M., Schmitt, K., Brandenburg, A., Berka, A., et al. (2008). Direct detection of tuberculosis infection in blood serum using three optical label-free approaches. Sensors and Actuators B: Chemical, 129, 934–940.CrossRefGoogle Scholar
  106. Nimje, N., Agarwal, A., Saraogi, G. K., Lariya, N., Rai, G., Agrawal, H., et al. (2009). Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. Journal of Drug Targeting, 17, 777–787.CrossRefGoogle Scholar
  107. Onoshita, T., Shimizu, Y., Yamaya, N., Miyazaki, M., Yokoyama, M., Fujiwara, N., et al. (2010). The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Colloids and Surfaces B: Biointerfaces, 76, 151–157.CrossRefGoogle Scholar
  108. Onozaki, I., & Raviglione, M. (2010). Stopping tuberculosis in the 21st century: Goals and strategies. Respirology, 15, 32–43.CrossRefGoogle Scholar
  109. Pai, N. P., & Pai, M. (2012). Point-of-care diagnostics for HIV and tuberculosis: Landscape, pipeline, and unmet needs. Discovery Medicine, 13, 35–45.Google Scholar
  110. Pandey, R., & Ahmad, Z. (2011). Nanomedicine and experimental tuberculosis: Facts, flaws, and future. Nanomedicine, 7, 259–272.CrossRefGoogle Scholar
  111. Pandey, R., & Khuller, G. K. (2004). Chemotherapeutic potential of alginate–chitosan microspheres as anti-tubercular drug carriers. Journal of Antimicrobial Chemotherapy, 53, 635–640.CrossRefGoogle Scholar
  112. Pandey, R., & Khuller, G. K. (2005a). Antitubercular inhaled therapy: Opportunities, progress and challenges. Journal of Antimicrobial Chemotherapy, 55, 430–435.CrossRefGoogle Scholar
  113. Pandey, R., & Khuller, G. K. (2005b). Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis, 85, 227–234.CrossRefGoogle Scholar
  114. Pandey, R., Sharma, S., & Khuller, G. K. (2005). Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis, 85, 415–420.CrossRefGoogle Scholar
  115. Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G. K., & Prasad, B. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. Journal of Antimicrobial Chemotherapy, 52, 981–986.CrossRefGoogle Scholar
  116. Patil, J. S., Devi, V. K., Devi, K., & Sarasija, S. (2015). A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India, 32, 331–338.CrossRefGoogle Scholar
  117. Patil-Gadhe, A., & Pokharkar, V. (2014). Single step spray drying method to develop proliposomes for inhalation: A systematic study based on quality by design approach. Pulmonary Pharmacology & Therapeutics, 27, 197–207.CrossRefGoogle Scholar
  118. Peh, W. Y. X., Reimhult, E., Teh, H. F., Thomsen, J. S., & Su, X. (2007). Understanding ligand binding effects on the conformation of estrogen receptor α-DNA complexes: A combinational quartz crystal microbalance with dissipation and surface plasmon resonance study. Biophysical Journal, 92, 4415–4423.CrossRefGoogle Scholar
  119. Pham, D. D., Fattal, E., & Tsapis, N. (2015). Pulmonary drug delivery systems for tuberculosis treatment. International Journal of Pharmaceutics, 478, 517–529.CrossRefGoogle Scholar
  120. Pinheiro, M., Lima, J., & Reis, S. (2011). Liposomes as drug delivery systems for the treatment of TB. Nanomedicine, 6, 1413–1428.CrossRefGoogle Scholar
  121. Pitt, J. M., Blankley, S., McShane, H., & O’Garra, A. (2013). Vaccination against tuberculosis: How can we better BCG? Microbial Pathogenesis, 58, 2–16.CrossRefGoogle Scholar
  122. Pourshahab, P. S., Gilani, K., Moazeni, E., Eslahi, H., Fazeli, M. R., & Jamalifar, H. (2011). Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. Journal of Microencapsulation, 28, 605–613.CrossRefGoogle Scholar
  123. Prabakaran, D., Singh, P., Jaganathan, K. S., & Vyas, S. P. (2004). Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. Journal of Controlled Release, 95, 239–248.CrossRefGoogle Scholar
  124. Prabhakar, N., Arora, K., Arya, S. K., Solanki, P. R., Iwamoto, M., Singh, H., et al. (2008). Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst, 133, 1587–1592.CrossRefGoogle Scholar
  125. Qurrat-ul-Ain, S., Sharma, G. K., & Khuller, S. K. (2003). Garg, alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects. Journal of Antimicrobial Chemotherapy, 51, 931–938.CrossRefGoogle Scholar
  126. Radtke, M., Souto, E. B., & Muller, R. H. (2005). Nanostructured lipid carriers—A novel generation of solid lipid drug carriers. Pharmaceutical Technology Europe, 17, 45–50.Google Scholar
  127. Ranjita, S., Loaye, A. S., & Khalil, M. (2011). Present status of nanoparticle research for treatment of tuberculosis. Journal of Pharmacy & Pharmaceutical Sciences, 14, 100–116.CrossRefGoogle Scholar
  128. Ren, J., He, F., Yi, S., & Cui, X. (2008). A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosensors & Bioelectronics, 24, 403–409.CrossRefGoogle Scholar
  129. Roa, W. H., Azarmi, S., Al-Hallak, M. H., Finlay, W. H., Magliocco, A. M., & Lobenberg, R. (2011). Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. Journal of Controlled Release, 150, 49–55.CrossRefGoogle Scholar
  130. Rytting, E., Nguyen, J., Wang, X., & Kissel, T. (2008). Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opinion on Drug Delivery, 5, 629–639.CrossRefGoogle Scholar
  131. Santos, J. B., Figueiredo, A. R., Ferraz, C. E., Oliveira, M. H., Silva, P. G., & Medeiros, V. L. (2014). Cutaneous tuberculosis: Epidemiologic, etiopathogenic and clinical aspects—Part I. Anais Brasileiros de Dermatologia, 89, 219–228.CrossRefGoogle Scholar
  132. Sarkar, S., & Suresh, M. R. (2011). An overview of tuberculosis chemotherapy—A literature review. Journal of Pharmacy & Pharmaceutical Sciences, 14, 148–161.CrossRefGoogle Scholar
  133. Schütz, C. A., Juillerat-Jeanneret, L., Käuper, P., & Wandrey, C. (2011). Cell response to the exposure to chitosan–TPP//alginate nanogels. Biomacromolecules, 12, 4153–4161.CrossRefGoogle Scholar
  134. Semaan, R., Traboulsi, R., & Kanj, S. (2008). Primary Mycobacterium tuberculosis complex cutaneous infection: Report of two cases and literature review. International Journal of Infectious Diseases, 12, 472–477.CrossRefGoogle Scholar
  135. Sethi, T., & Agrawal, A. (2011). Structure and function of the tuberculous lung: Considerations for inhaled therapies. Tuberculosis, 91, 67–70.CrossRefGoogle Scholar
  136. Sethuraman, G., & Ramesh, V. (2013). Cutaneous tuberculosis in children. Pediatric Dermatology, 30, 7–16.CrossRefGoogle Scholar
  137. Sharma, A., Sharma, S., & Khuller, G. K. (2004). Lectin-functionalized poly (lactide-coglycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. Journal of Antimicrobial Chemotherapy, 54, 761–766.CrossRefGoogle Scholar
  138. Sharma, K., Somavarapu, S., Colombani, A., Govind, N., & Taylor, K. M. (2012). Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. European Journal of Pharmaceutics and Biopharmaceutics, 81, 74–81.CrossRefGoogle Scholar
  139. Shen, Z. G., Chen, W. H., Jugade, N., Gao, L. Y., Glover, W., Shen, J. Y., et al. (2012). Fabrication of inhalable spore like pharmaceutical particles for deep lung deposition. International Journal of Pharmaceutics, 430, 98–103.CrossRefGoogle Scholar
  140. Shingnapurkar, D., Dandawate, P., Anson, C. E., Powell, A. K., Afrasiabi, Z., Sinn, E., et al. (2012). Synthesis and characterization of pyruvate-isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorganic & Medicinal Chemistry Letters, 22, 3172–3176.CrossRefGoogle Scholar
  141. Siddiqi, K., Lambert, M. L., & Walley, J. (2003). Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: The current evidence. The Lancet Infectious Diseases, 3, 288–296.CrossRefGoogle Scholar
  142. Singh, H., Bhandari, R., & Kaur, I. P. (2013). Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. International Journal of Pharmaceutics, 446, 106–111.CrossRefGoogle Scholar
  143. Son, Y. J., & McConville, J. T. (2011). A new respirable form of rifampicin. European Journal of Pharmaceutics and Biopharmaceutics, 78, 366–376.CrossRefGoogle Scholar
  144. Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., & Ke, H. (2015). Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage specific delivery. Pharmaceutical Research, 32, 1741–1751.CrossRefGoogle Scholar
  145. Soo, P. C., Horng, Y. T., Chang, K. C., Wang, J. Y., Hsueh, P. R., Chuang, C. Y., et al. (2009). A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Molecular and Cellular Probes, 23, 240–246.CrossRefGoogle Scholar
  146. Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A., & Chiappetta, D. A. (2010). New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews, 62, 547–559.CrossRefGoogle Scholar
  147. Sung, J. C., Padilla, D. J., Garcia-Contreras, L., Verberkmoes, J. L., Durbin, D., Peloquin, C. A., et al. (2009). Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharmaceutical Research, 26, 1847–1855.CrossRefGoogle Scholar
  148. Sung, J. C., Pulliam, B. L., & Edwards, D. A. (2007). Nanoparticles for drug delivery to the lungs. Trends in Biotechnology, 25, 563–570.CrossRefGoogle Scholar
  149. Thanyani, S. T., Roberts, V., Siko, D. G. R., Vrey, P., & Verschoor, J. A. (2008). A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. Journal of Immunological Methods, 332, 61–72.CrossRefGoogle Scholar
  150. Thiruppathiraja, C., Kamatchiammal, S., Adaikkappan, P., Santhosh, D. J., & Alagar, M. (2011). Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Analytical Biochemistry, 417, 73–79.CrossRefGoogle Scholar
  151. Tom, R. T., Suryanarayanan, V., Reddy, P. G., Baskaran, S., & Pradeep, T. (2004). Ciprofloxacinprotected gold nanoparticles. Langmuir, 20, 1909–1914.CrossRefGoogle Scholar
  152. Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50, 600–613.Google Scholar
  153. Van Rie, A., Page-Shipp, L., Scott, L., Sanne, I., & Stevens, W. (2010). Xpert® MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: Hype or hope? Expert Review of Molecular Diagnostics, 10, 937–946.CrossRefGoogle Scholar
  154. van Zyl, L., du Plessis, J., & Viljoen, J. (2015). Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis, 95, 629–638.CrossRefGoogle Scholar
  155. Varma, J. N. R., Kumar, T. S., Prasanthi, B., & Ratna, J. V. (2015). Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: Efficiency for alveolar macrophage targeting. Indian Journal of Pharmaceutical Sciences, 77, 258–266.CrossRefGoogle Scholar
  156. Vashist, A., Vashist, A., Gupta, Y. K., & Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. Journal of Materials Chemistry B, 2, 147–166.CrossRefGoogle Scholar
  157. Videira, M. A., Botelho, M. F., Santos, A. C., Gouveia, L. F., de Lima, J. J., & Almeida, A. J. (2002). Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. Journal of Drug Targeting, 10, 607–613.CrossRefGoogle Scholar
  158. Vyas, S. P., Kannan, M. E., Jain, S., Mishra, V., & Singh, P. (2004). Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. International Journal of Pharmaceutics, 269, 37–49.CrossRefGoogle Scholar
  159. Wallis, R. S., & Hafner, R. (2015). Advancing host-directed therapy for tuberculosis. Nature Reviews Immunology, 15, 255–263.CrossRefGoogle Scholar
  160. Wang, S., Xu, F., & Demirci, U. (2010). Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnology Advances, 28, 770–781.CrossRefGoogle Scholar
  161. WHO. (2011). Global tuberculosis control. Retrieved Jan 26, 2012 from
  162. WHO. (2015a). Global tuberculosis report 2015. WHO Library Cataloguing-in-Publication Data.Google Scholar
  163. WHO. (2015b). The use of delamanid in the treatment of multidrug-resistant tuberculosis. WHO Library Cataloguing-in-Publication Data.Google Scholar
  164. Wijagkanalan, W., Kawakami, S., Takenaga, M., Igarashi, R., Yamashita, F., & Hashida, M. (2008). Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. Journal of Controlled Release, 125, 121–130.CrossRefGoogle Scholar
  165. Willis, L., Hayes, D., Jr., & Mansour, H. M. (2012). Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung, 190, 251–262.CrossRefGoogle Scholar
  166. Xie, H., Mire, J., Kong, Y., Chang, M., Hassounah, H. A., Thornton, C. N., et al. (2012). Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nature Chemistry, 4, 802–809.CrossRefGoogle Scholar
  167. Yadav, A. B., Singh, A. K., Verma, R. K., Mohan, M., Agrawal, A. K., & Misra, A. (2011). The devil’s advocacy: When and why inhaled therapies for tuberculosis may not work. Tuberculosis, 91, 65–66.CrossRefGoogle Scholar
  168. Yeo, W. H., Liu, S., Chung, J. H., Liu, Y. L., & Lee, K. H. (2009). Rapid detection of Mycobacterium tuberculosis cells by using microtip-based immunoassay. Analytical and Bioanalytical Chemistry, 393, 1593–1600.CrossRefGoogle Scholar
  169. Yu, W., Liu, C., Liu, Y., Zhang, N., & Xu, W. (2010). Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharmaceutical Research, 27, 1584–1596.CrossRefGoogle Scholar
  170. Zumla, A., Chakaya, J., Centis, R., D’Ambrosio, L., Mwaba, P., Bates, M., et al. (2015). Tuberculosis treatment and management—An update on treatment regimens, trials, new drugs, and adjunct therapies. The Lancet Respiratory Medicine, 3, 220–234.CrossRefGoogle Scholar
  171. Zwerling, A., Behr, M. A., Verma, A., Brewer, T. F., Menzies, D., & Pai, M. (2011). The BCG World Atlas: A database of global BCG vaccination policies and practices. PLoS Medicine, 8, e1001012.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdel Naser Dakkah
    • 1
    Email author
  • Yazan Bataineh
    • 1
  • Bilal A AL Jaidi
    • 1
  • Mohammad F. Bayan
    • 1
  • Nabil A. Nimer
    • 1
  1. 1.Faculty of PharmacyPhiladelphia UniversityAmmanJordan

Personalised recommendations