Advertisement

Basic Techniques to Investigate the Nanostructured Materials

  • Navaneethan Duraisamy
  • Kavitha Kandiah
  • Balagurunathan RamasamyEmail author
Chapter
  • 38 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

This chapter is to deliver the basic methods for the characterizations of nanostructured materials. There are different shapes of materials existing in the nanomaterials such as particles, sheets, roads, dots, balls and films. The crystalline structures and surface morphology of nanomaterials are clearly calibrated using advanced techniques such as X-ray diffraction, Field emission scanning electron microscopy and transmission electron microscopy. The chemical compositions and purity of materials are examined by Energy dispersive X-ray analysis, Fourier transform infrared analysis and X-ray photoelectron spectroscopy. The biological studies of nanomaterials are examined using bioactivity, anti-microbial activity and bio degradability. This review gives a comprehensive understanding of the physico-chemical and biological nature of the nanomaterials.

Notes

Acknowledgements

The author Dr. Navaneethan Duraisamy acknowledges the financial support provided by DST INSPIRE Faculty scheme (DST/INSPIRE/04/2018/001444), New Delhi. Dr. K. Kavitha acknowledges the financial support provided by Dr. D.S. Kothari Postdoctoral Fellowship (Ref. no: No. F.4–2/2006 (BSR)/BL/15–16/0225, UGC, New Delhi.

References

  1. Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731–5736.CrossRefGoogle Scholar
  2. Al–Sagheer, F. A., & Merchant, S. (2011). Visco–elastic properties of chitosan–titania nano–composites. Carbohydrate Polymers, 85, 356–362.CrossRefGoogle Scholar
  3. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. Journal of the American Ceramic Society, 73, 373–380.Google Scholar
  4. Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. C., & Hu, Y. C. (2007). Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials, 28, 2294–2305.CrossRefGoogle Scholar
  5. Choi, H. C., Ahn, H. J., Jung, Y. M., Lee, M. K., Shin, H. J., Kim, S. B., et al. (2004). Characterization of the structures of size-selected TiO2 nanoparticles using X-ray absorption spectroscopy. Applied Spectroscopy, 58, 598–602.CrossRefGoogle Scholar
  6. Duraisamy, N., Hong, S. J., & Choi, K. H. (2013). Deposition and characterization of silver nanowires embedded, PEDOT: PSS thin films via electrohydrodynamic atomization. Chemical Engineering Journal, 225, 887–894.CrossRefGoogle Scholar
  7. Duraisamy, N., Kandiah, K., Rajendran, R., Prabhu, S., Ramesh, R., & Dhanaraj, G. (2018). Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Research on Chemical Intermediates, 44, 5653–5667.CrossRefGoogle Scholar
  8. Kavitha, K., Chunyan, W., Navaneethan, D., Rajendran, V., Valiyaveettil, S., & Vinoth, A. (2013a). In vitro gene expression and preliminary in vivo studies of temperature-dependent titania–graphene composite for bone replacement applications. RSC Advances, 210, 43951–43961.Google Scholar
  9. Kavitha, K., Prabhu, K., Rajendran, M., Manivasankan, V., Prabu, P., & Jayakumar, T. (2013b). Optimization of nano–titania and titania–chitosan nanocomposite to enhance biocompatibility. Current Nanoscience, 3, 308–317.CrossRefGoogle Scholar
  10. Kavitha, K., Prabhu, M., Selvam, M., & Rajendran, V. (2013c). TiO2–graphene nanocomposites for enhanced osteocalcin induction. Materials Science and Engineering C, 48, 252–262.Google Scholar
  11. Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013d). In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93, 731–739.CrossRefGoogle Scholar
  12. Kirk, S. E., Skepper, J. N., & Donald, A. M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. Journal of Microscopy, 233, 205–224.CrossRefGoogle Scholar
  13. Krishnamoorthy, K., Kim, G. S., & Kim, S. J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry, 20, 644–649.CrossRefGoogle Scholar
  14. Manivasakan, P., & Rajendran, V. (2011). Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon. Journal of the American Ceramic Society, 94, 410–1420.CrossRefGoogle Scholar
  15. Manivasakan, P., Rajendran, V., Rauta, P. R., Sahu, B. B., Sahu, P., Panda, B. K., et al. (2010). Effect of TiO2 nanoparticles on properties of silica refractory. Journal of the American Ceramic Society, 93, 2236–2243.CrossRefGoogle Scholar
  16. Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2012). Tools to characterize Nanomaterials. In: Texbook of nanoscience and nanotechnology (pp. 149–175). Springer. ISBN 978-3-642-28030-6.Google Scholar
  17. Nakayama, N., & Hayashi, T. (2007). Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92, 1255–1264.CrossRefGoogle Scholar
  18. Rajkumar, M., Kavitha, K., Prabhu, M., Meenakshisundaram, N., & Rajendran, V. (2013). Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Materials Science and Engineering C, 33, 3237–3244.CrossRefGoogle Scholar
  19. Rajkumar, M., Meenakshi Sundaram, N., & Rajendran, V. (2011). Preparation of size controlled, stoichiometric and bioresorbable hydroxyapatite nanorod by varying initial pH, Ca/P ratio and sintering temperature. Digest Journal of Nanomaterials and Biostructures, 6(1), 169–179.Google Scholar
  20. Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterisation of electrochemically–reduced graphene. Bulletin of Material Science, 36, 1315–1321.CrossRefGoogle Scholar
  21. Vallet-Regi, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108.CrossRefGoogle Scholar
  22. VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F., & Meyers, G. F. (2001). Nanoindentation of polymers: An overview. Macromolecular Symposium, 167, 15–43.CrossRefGoogle Scholar
  23. Wu, J. B., Lin, M. L., Cong, X., Liu, H. N., & Tan, P. H. (2018). Raman spectroscopy of graphene-based materials and its applications in related devices. Chemical Society Reviews, 47, 1822–1873.CrossRefGoogle Scholar
  24. Xu, Q., Fan, H., Guo, Y., & Cao, Y. (2006). Preparation of titania/silica mesoporous composite with activated carbon template in supercritical carbon doixide. Material Science and Engineering A, 435, 158–162.CrossRefGoogle Scholar
  25. Yin, H. Y., Wada, Kitamura, T., Kambe, S., Murasawa, S., Mori, H., et al. (2001). Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 11, 1694–1703.CrossRefGoogle Scholar
  26. Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234, 166–174.CrossRefGoogle Scholar
  27. Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80, 394–400.CrossRefGoogle Scholar
  28. Zhang, X. Y., Li, H. P., Cui, X. L., & Lin, Y. (2010). Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. Journal of Materials Chemistry, 20, 2801–2806.CrossRefGoogle Scholar
  29. Zhang, X., Sun, Y., Cui, X., & Jiang, Z. (2012). A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution. International Journal of Hydrogen Energy, 37, 811–815.CrossRefGoogle Scholar
  30. Zhao, L., Chang, J., & Zhai, W. (2009). Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds’. Journal of Materials Science Materials in Medicine, 20, 949–957.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Navaneethan Duraisamy
    • 1
  • Kavitha Kandiah
    • 2
  • Balagurunathan Ramasamy
    • 2
    Email author
  1. 1.Department of ChemistryJ.K.K. Nataraja College of Arts and ScienceKomarapalayam, NamakkalIndia
  2. 2.Department of MicrobiologyPeriyar UniversitySalemIndia

Personalised recommendations